PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Removal of Organic Acids and Aldehydes from Gases Emitted from Composting Municipal Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes an experiment conducted under industrial (real) conditions in a municipal waste composting facility. The waste gases emitted from composting processes were passed through an experimental installation built in a semi-technical scale. The installation consisted of two biofilters which were filled with different aluminosilicate beds with average granulation of 4–10 mm. The sorbents were inoculated with a mixture of microorganisms bred on the mineral bed, previously operating in the tank with the waste from that composting facility. Malodorous gases were passed through the installation and concentrations of organic acids and aldehydes before and after passing through biofilters with the examined sorbents. The aim of the experiment was to determine which of the two mineral sorbents better removes the analysed contaminations from post-production gases. The experiment lasted for a month, as difficult and highly variable industrial conditions caused problems with operation and the experiment was suddenly interrupted. The study will be continued after the introduction of design changes in the installation. After the month of conducting the study it can be conclude that in the first weeks of the study, before the dampness of sorbents took place, halloysite reduced the concentrations of acetic acid in 80–99%, and of acetaldehyde in 96–98%. The other aluminosilicate caused a drop in the concentrations by 97–98% and 92–86%, respectively. Moreover, in the experiment planned in the semi-technical scale, it was not possible to determine the overall performances of mineral biofilters due to unstable operating conditions and ending the experiment prematurely. The halloysite sorbent finally turned out to be potentially the more efficient than the other aluminosilicate sorbent.
Rocznik
Strony
58--66
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Environmental Protection and Engineering, University of Bielsko-Biala, Poland
Bibliografia
  • 1. Banaś D., Kubala-Kukuś A., Braziewicz J., Majewska U., Pajek M., Wudarczyk-Moćko J., Czech K., Garnuszek M., Słomkiewicz P., Szczepanik B. 2013. Study of properties of chemically modified samples of halloysite min eral with X-ray fluorescence and X-ray pow der diffraction methods. Radiation Physics and Chemistry, 93, 129–134.
  • 2. Du M., Guo B., Jia D. 2010. Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59, 574–582.
  • 3. Guggenheim S.S., Adams J.M., Bain D.C., Ber gaya F., Brigatti M.F., Drits V.A., Formoso M.L.L., Galán E., Kogure T., Stanjek H. 2006. Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54(6), 761–772.
  • 4. Jędrczak A., Haziak K. 2005. Defining requirements for composting and other methods of biological processing of waste. Pracownie Badawczo-Projektowe EKOSYSTEM, Zielona Góra. (in Polish)
  • 5. Kośmider J., Mazur-Chrzanowska B., Wyszyński B. 2002. Odours. Wyd. Nauk. PWN, Warszawa. (in Polish)
  • 6. Kwarciak-Kozłowska A., Bańka B. 2014. Biofiltration as a Method of the Neutralization of Waste Forming during Composting Biodegradable Fraction of Municipal and Industrial Waste. Inżynieria i Ochrona Środowiska, 17(4), 631–645. (in Polish)
  • 7. Kwaśny J., Balcerzak W. 2014. Characteristics of selected indirect methods of reducing the emission of odors. Archives of Waste Management and Environmental Protection, 16(4), 125–134.
  • 8. Machnicka A., Nowicka E. 2016. The application of halloysite to reduce the concentration of contaminants in municipal wastewater. Inżynieria Ekologiczna, 50, 217–222. (in Polish)
  • 9. Matusik J., Scholtzova E., Tunega D. 2012. Influence of synthesis conditions on the formation of a kaolinite–methanol complex and simulation of its vibrational spectra. Clays Clay Miner, 60, 227–239.
  • 10. Mingliang D.M., Guo B., Jia D. 2010. Newly emerging applications of halloysite nanotubes: a Review. Polymer International, 59(5), 574–582.
  • 11. Pasbakhsh P., How H.K., Piao Ch. S. 2012. Modification of halloysite nanotubes with glycidyl methacrylate. Conference materials 1, 22nd Australian Clay Minerals Society Conference – Mildura, 1–4.
  • 12. Radziemska M. 2018. Study of applying naturally occurring mineral sorbents of Poland (dolomite, halloysite, chalcedonite) for aided phytostabilization of soil polluted with heavy metals. Catena, 163, 123–129.
  • 13. Ravindra K., Manasi G., Sheetal G., Kumar P.B. 2012. Halloysite Nanotubes and Applications: A Review. Journal of Advanced Scientific Research, 3(2), 25–29.
  • 14. Sakiewicz P., Cebula J., Piotrowski K., Nowosielski R., Wilk R., Nowicki M. 2005. Application of microand nanostructural multifunctional halloysitebased sorbents from DUNINO deposit in selected biotechnological processes. Journal of Achievements in Materials and Manufacturing Engineering, 69, 69–78.
  • 15. Sówka I., Miller U., Sobczyński P. 2014. Emission of odours from the processes of composting municipal waste. Przemysł Chemiczny, 1, 93(15), 1000–1003. (in Polish)
  • 16. Szczygielska A., Kijeński J. 2010. The application of halloysite as a filler for the modification of polypropylene. Part 1. The Characteristics of Halloysite as a Filler. Kompozyty, 10(2), 181–185. (in Polish)
  • 17. Veerabadran N.G., Price R.R., Lvov Y.M. 2007. Nano: Brief Reports and Reviews, 2(2), 115–120.
  • 18. Wieczorek A. 1998. The influence of the emission of volatile organic compounds on the smell of waste gases from waste composting facility. Ochrona Środowiska, 1(68), 33–35. (in Polish)
  • 19. Yuan P., Southon P.D., Liu Z., Green M.E.R., Hook J.M., Antill S.J., Kepert C.J. 2008. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. The Journal of PhysicalChemistry C, 112, 15742–15751.
  • 20. Żarczyński A., Rosiak K., Anielak P., Wolf W. 2014. Practical methods of clearing biogas from hydrogen sulphide. Part 1. Application of solid sorbents, Acta Innovations, 12, 24–34.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56f97f97-9907-4e9c-90ef-6ac8be776caa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.