Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zielone magazynowanie i zrównoważony rozwój w kontekście transformacji energetycznej: analiza bibliometryczna i przegląd literatury
Języki publikacji
Abstrakty
This paper presents a bibliometric analysis and literature review of green warehousing (GW) within the context of sustainability and the energy transition. This study analyses 95 peer-reviewed publications from Scopus (2007–2024) to examine research trends, key themes, and methodological approaches. Using VOSviewer, the study identifies major clusters around energy efficiency, consumption, optimisation, and renewable energy use. Interest in GW has increased significantly since 2015, particularly in engineering and computer science, with substantial contributions from Italy, China, and India. While quantitative optimisation dominates, integrating decision-support tools, life cycle assessments, and interdisciplinary methods remains limited. Social science engagement is also lacking. The review calls for more empirical, practice-based research on warehouse technologies and intelligent energy systems within circular and green supply chain models. This study addresses a key gap by linking GW to energy-focused sustainability and offers a replicable framework to guide future research in the global green transition.
Artykuł przedstawia analizę bibliometryczną i przegląd literatury dotyczący zielonego magazynowania (GW) w kontekście zrównoważonego rozwoju i transformacji energetycznej. Badanie obejmuje 95 recenzowanych publikacji z bazy Scopus (2007–2024), w celu zidentyfikowania trendów badawczych, kluczowych zagadnień oraz podejść metodologicznych. Z wykorzystaniem narzędzia VOSviewer wskazano główne klastry tematyczne, koncentrujące się wokół efektywności energetycznej, zużycia energii, optymalizacji i wykorzystania energii odnawialnej. Zainteresowanie GW znacząco wzrosło od 2015 r., szczególnie w dziedzinach inżynierii i informatyki, przy istotnym wkładzie ze strony badaczy z Włoch, Chin i Indii. Choć dominują badania ilościowe oparte na optymalizacji, integracja narzędzi wspomagania decyzji, ocen cyklu życia i metod interdyscyplinarnych pozostaje ograniczona. Brakuje również badań z obszaru nauk społecznych. Przegląd wskazuje na potrzebę prowadzenia większej liczby badań empirycznych, opartych na praktyce, dotyczących technologii magazynowych i inteligentnych systemów energetycznych w ramach modeli cyrkularnych i zielonych łańcuchów dostaw. Niniejsze opracowanie wypełnia istotną lukę, łącząc GW ze zrównoważonym rozwojem ukierunkowanym na energię, i proponuje powtarzalne ramy badawcze, które mogą wspierać przyszłe prace nad globalną zieloną transformacją.
Czasopismo
Rocznik
Tom
Strony
art. no. 1173
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- University of Lodz, Department of Operational Research
autor
- University of Lodz, Department of Operational Research, Revolution 1905 Street 37/39, 90-214 Lodz, Poland
Bibliografia
- Akandere, G. (2017). The effect of logistics businesses' green warehouse management practices on business performance. Proceedings of the 25th International Academic Conference. OECD Headquarters, Paris, 10-23. https://doi.org/10.20472/iac.2016.025.002
- Aveyard, H. (2014). Doing a literature review in health and social care : a practical guide. New York: McGraw-Hill.
- Bartolini, M., Bottani, E., & Grosse, E. H. (2019). Green warehousing: Systematic literature review and bibliometric analysis. Journal of Cleaner Production, 226, 242–258. https://doi.org/10.1016/j.jclepro.2019.04.055
- Bhandigani, M., Pattan, A., & Carpitella, S. (2024). Strategic roadmap for adopting data-driven proactive measures in solar logistics. Applied Sciences, 14(10), 4246. https://doi.org/10.3390/app14104246
- Cannava, L., Javan, F. D., Najafi, B., & Perotti, S. (2024). Green warehousing practices: Assessing the impact of PV self-consumption enhancement strategies in a logistics warehouse. Sustainable Energy Technologies and Assessments, 72, 104054. https://doi.org/10.1016/j.seta.2024.104054
- Chen, H., Zhao, D., Li, J., Zhang, L., Shen, T., & Yin, Y. (2024). A study on the exploration of the development process of regenerative applications of energy technologies in industrial warehouse buildings: Bibliometric research from 2004 to 2024. Buildings, 14(12), 4019. https://doi.org/10.3390/buildings14124019
- Chiang, K. L. (2024). Optimising warehouse building design for simultaneous revenue generation and carbon reduction in Taiwan: A Fuzzy Nonlinear Multi-Objective Approach. Buildings, 14(8), 2441. https://doi.org/10.3390/buildings14082441
- Cosma, A., Conte, R., Solina, V., & Ambrogio, G. (2024). Design of KPIs for evaluating the environmental impact of warehouse operations: a case study. Procedia Computer Science, 232, 2701–2708. https://doi.org/10.1016/j.procs.2024.02.087
- Daniel, J., & Dissanayake, C. K. (2021). Decarbonising supply chain operations. In M. Fargnoli, M. Lombardi, M. Tronci, P. Dallasega, M. M. Savino, F. Costantino, G. Di Gravio, & R. Patriarca (Eds.), Proceedings - 4th European Rome Conference 2021 (pp. 1421-1422). https://doi.org/10.1016/j.ejor.2006.07.009
- Dimitrov, L., & Saraceni, A. (2023). Ranking model to measure energy efficiency for warehouse operations sustainability. Journal of Cleaner Production, 428, 139375. https://doi.org/10.1016/j.jclepro.2023.139375
- Đukić, G., Česnik, V., & Opetuk, T. (2010). Order-picking methods and technologies for greener warehousing. Strojarstvo, 52(1), 23-31. https://www.researchgate.net/publication/286952752_Order-picking_Methods_and_Technologies_for_Greener_Warehousing
- Ene, S., Küçükoğlu, İ., Aksoy, A., & Öztürk, N. (2016). A genetic algorithm for minimising energy consumption in warehouses. Energy, 114, 973-980. https://doi.org/10.1016/j.energy.2016.08.045
- Fahimnia, B., Sarkis, J., & Eshragh, A. (2015). A tradeoff model for green supply chain planning: A leanness-versus-greenness analysis. Omega, 54, 173–190. https://doi.org/10.1016/j.omega.2015.01.014
- Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, 177(1), 1–21. https://doi.org/10.1016/j.ejor.2006.02.025
- Hämäläinen, R. P., Lindstedt, M. R., & Sinkko, K. (2000). Multiattribute risk analysis in nuclear emergency management. Risk Analysis, 20(4), 455–468. https://doi.org/10.1111/0272-4332.204044
- Jensen, S. S. (2016). Energy performances of low charge NH3 systems in practice. Refrigeration Science and Technology. https://doi.org/10.18462/iir.iccc.2016.0064
- Kozar, Ł., & Wodnicka, M. (2024). Blockchain in energy: Literature review in the context of sustainability. Economics and Environment, 90(3), 866. https://doi.org/10.34659/eis.2024.90.3.866
- Lei, M. (2024). Application of energy sustainability model based on optical sensing technology in intelligent warehousing performance management in the green manufacturing industry. Thermal Science and Engineering Progress, 54, 102789. https://doi.org/10.1016/j.tsep.2024.102789
- Lewczuk, K., Kłodawski, M., & Gepner, P. (2021). Energy consumption in a distributional warehouse: A practical case study for different warehouse technologies. Energies, 14(9), 2709. https://doi.org/10.3390/en14092709
- Li, Z., Zheng, D., Li, X., Liu, X., & Wu, Y. (2024). Research on Adaptive System of Warehouse Energy Management System Using Gradient Boosting Tree Algorithm. 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems, ICPICS 2024, 1643–1648. https://doi.org/10.1109/icpics62053.2024.10796830
- López-Montero, D., Hernando-Sánchez, P., Limones-Andrade, M., García-Navarro, A., Valverde, A., Parra, J. M. S., & Auñón, J. M. (2024). Differentiable programming for gradient-based control and optimisation in physical systems. Sustainable Energy, Grids and Networks, 39, 101495. https://doi.org/10.1016/j.segan.2024.101495
- Luu, M. (2016). Developing the implementation of green warehousing at IKEA Finland. [Bachelor's Thesis]. Degree Programme in International Business. Haaga-Helia University of Applied Sciences. https://core.ac.uk/download/pdf/38137917.pdf
- Lv, J., Li, Y., Huang, G., & Li, Y. (2022). Planning the economy-energy-environment nexus system: A case study of Pearl River Delta, China. ACM International Conference Proceeding Series, 75–81. https://doi.org/10.1145/3533254.3533269
- Marchet, G., Melacini, M., & Perotti, S. (2015). Investigating order picking system adoption: a case-study-based approach. International Journal of Logistics Research and Applications, 18(1), 82–98. https://doi.org/10.1080/13675567.2014.945400
- Marchi, B., Zanoni, S., & Jaber, M. Y. (2020). Energy implications of lot sizing decisions in refrigerated warehouses. Energies, 13(7), 1739. https://doi.org/10.3390/en13071739
- Mashud, A. H. M., Roy, D., Chakrabortty, R. K., Tseng, M. L., & Pervin, M. (2022). An optimum balance among the reduction in ordering cost, product deterioration and carbon emissions: A sustainable green warehouse. Environmental Science and Pollution Research, 29, 78029–78051. https://doi.org/10.1007/s11356-022-21008-0
- McLay, A., Morant, G., Breisch, K., Rodwell, J., & Rayburg, S. (2024). Practices to improve the sustainability of Australian cold storage facilities. Sustainability, 16(11), 4584. https://doi.org/10.3390/su16114584
- Md Mashud, A. H., Pervin, M., Mishra, U., Daryanto, Y., Tseng, M. L., & Lim, M. K. (2021). A sustainable inventory model with controllable carbon emissions in green-warehouse farms. Journal of Cleaner Production, 298, 126777. https://doi.org/10.1016/j.jclepro.2021.126777
- Meneghetti, A., & Monti, L. (2013). Sustainable storage assignment and dwell-point policies for automated storage and retrieval systems. Production Planning & Control, 24(6), 511-520. https://doi.org/10.1080/09537287.2011.637525
- Meneghetti, A., & Monti, L. (2015). Greening the food supply chain: An optimisation model for sustainable design of refrigerated automated warehouses. International Journal of Production Research, 53(21), 6567–6587. https://doi.org/10.1080/00207543.2014.985449
- Modica, T., Perotti, S., & Melacini, M. (2021). Green warehousing: Exploration of organisational variables fostering the adoption of energy-efficient material handling equipment. Sustainability, 13(23), 13237. https://doi.org/10.3390/su132313237
- Nightingale, J. M., & Marshall, G. (2012). Citation analysis as a measure of article quality, journal influence and individual researcher performance. Radiography, 18(2), 60–67. https://doi.org/10.1016/j.radi.2011.10.044
- Oloruntobi, O., Mokhtar, K., Mohd Rozar, N., Gohari, A., Asif, S., & Chuah, L. F. (2023). Effective technologies and practices for reducing pollution in warehouses - A review. Cleaner Engineering and Technology, 13, 100622. https://doi.org/10.1016/j.clet.2023.100622
- Pham, A., Jin, T., Novoa, C., & Qin, J. (2019). A multi-site production and microgrid planning model for net-zero energy operations. International Journal of Production Economics, 218, 260–274. https://doi.org/10.1016/j.ijpe.2019.04.036
- Ries, J. M., Grosse, E. H., & Fichtinger, J. (2017). Environmental impact of warehousing: a scenario analysis for the United States. International Journal of Production Research, 55(21), 6485–6499. https://doi.org/10.1080/00207543.2016.1211342
- Sandra, M., Narayanamoorthy, S., Ferrara, M., Innab, N., Ahmadian, A., & Kang, D. (2024). A novel decision support system for the appraisal and selection of green warehouses. Socio-Economic Planning Sciences, 91, 101782. https://doi.org/10.1016/j.seps.2023.101782
- Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
- Tappia, E., Marchet, G., Melacini, M., & Perotti, S. (2015). Incorporating the environmental dimension in the assessment of automated warehouses. Production Planning and Control, 26(10), 824–838. https://doi.org/10.1080/09537287.2014.990945
- Tiwari, S., Daryanto, Y., & Wee, H. M. (2018). Sustainable inventory management with deteriorating and imperfect quality items considering carbon emission. Journal of Cleaner Production, 192, 281–292. https://doi.org/10.1016/j.jclepro.2018.04.261
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56f7cfb2-20fb-48f3-8dea-ab6032ce2a7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.