PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coating of LiBH4 and Its Effect on the Decomposition of RDX and AP

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The novel fuel additive LiBH4 was introduced as an energetic component for its outstanding hydrogen content, perfect burning performance and high reactivity. In order to limit the hygroscopicity and to improve the stability in the air, LiBH4 was coated on the surface with wax and polyester carbonate. The final product was characterized by scanning electron microscopy (SEM), X-ray photoelectron energy spectroscopy (XPS) and Raman spectroscopy, while the stability in air was investigated by regular checking of variations in weight. The results show that a uniform coating layer was formed on the surface of the LiBH4, and the coverage was estimated from the boron content as approximately 82%. A healing effect was confirmed on defective surfaces exposed to air; the coating layer improves the relative stability by 50.7%. Furthermore, LiBH4 as an additive to promote the thermal decomposition of 1,3,5-trinitro-1,3,5-trazinane (RDX) and ammonium perchlorate (AP) was explored by differential scanning calorimetry (DSC), in which the catalytic effects of pure LiBH4 and coated LiBH4 were compared, and indicated that the coating does not decrease the reactivity of LiBH4. It is suggested that surface coating with some inert materials is a simple and effective method for improving the storage and performance of LiBH4, while ensuring its reactivity.
Słowa kluczowe
Rocznik
Strony
134--151
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an, Shaanxi 710065, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an, Shaanxi 710065, China
autor
  • State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an, Shaanxi 710065, China
  • Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, China
autor
  • State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an, Shaanxi 710065, China
  • Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, China
autor
  • State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an, Shaanxi 710065, China
  • Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an, Shaanxi 710065, China
  • Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, China
autor
  • School of Chemical Engineering and Material, Northwestern University, Xi’an, Shaanxi 710069, China
autor
  • School of Chemical Engineering and Material, Northwestern University, Xi’an, Shaanxi 710069, China
Bibliografia
  • [1] Xi, J.F.; Liu, J.Z.; Wang, Y.; Liang, D.L.; Zhou, J.H. Effect of Metal Hydrides on the Burning Characteristics of Boron. Thermochim. Acta 2004, 597: 58-64.
  • [2] Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal Hydride Materials for Solid Hydrogen Storage: a Review. Int. J. Hydrogen Energy 2007, 32: 1121-1140.
  • [3] Graetz, J.; Reilly, J. J. Thermodynamics of the α, β and γ Polymorphs of AlH3. J. Alloys Compounds 2006, 424: 262-265.
  • [4] Ren, R.M.; Ortiz, A.L.; Markmaitree, T.; Osborn, W.; Shaw, L.L. Stability of Lithium Hydride in Argon and Air. J. Phys. Chem. B 2006, 110: 10567-10575.
  • [5] Pitt, M.P.; Paskevicius, M.; Brown, D.H.; Sheppard, D.A.; Buckley, C.E. Thermal Stability of Li2B12H12 and its Role in the Decomposition of LiBH4. J. Am. Chem. Soc. 2013, 135(18): 6930-6941.
  • [6] Joseph, R.H. Enhanced Organic Explosives. Patent US 3012868, 1961.
  • [7] Xiong, H.L.; Chen, X.P. Determination of Variation Mathematic Model of Tritium in Lithium Deuteride-Tritide. Aviation Metrology & Measurement Technology 1999, 19(5): 1-7. (in Chinese)
  • [8] Ma, Y.M.; Cui, T.; He, W.J.; Zhou, Q.; Liu, Z.M.; Zou, G.T. Pressure and Temperature Effects on the System of Lithium Doped in Solid D2. Chinese J. High Pressure Phys. 2003, 17(2): 88-94.
  • [9] Cheng, Y.F.; Ma, H.H.; Liu, R.; Shen, Z.W. Explosion Power and Pressure Desensitization Resisting Property of Emulsion Explosives Sensitized by MgH2. J. Energ. Mater. 2014, 32(3): 207-218.
  • [10] Yao, X.L.; Cao, Y.L.; He, J.X. Aluminum Hydride − High Energy Fuel of Solid Propellant. Chinese J. Energ. Mater. 2014, 12(z1): 161-165. (in Chinese)
  • [11] Zǔttel, A. Materials for Hydrogen Storage. Mater Today 2003, 6(9): 24-33.
  • [12] Goudon, J.P.; Bernard, F.; Renouard, J.; Yvart, P. Experimental Investigation on Lithium Borohydride Hydrolysis. Int. J. Hydrogen Energy 2010, 35(20): 11071-11076.
  • [13] Murtomaa, M.; Laine, E.; Salonen, J.; Kuusinen, O. On Effects of Ambient Humidity on Sodium Borohydride Powder. Powder Handling Process 1999, 11: 87-90.
  • [14] Haertling, C.; Hanrahan, R.J.; Smith, R. A Literature Review of Reactions and Kinetics of Lithium Hydride Hydrolysis. J. Nucl. Mater. 2006, 349: 195-233.
  • [15] Li, C.; Peng, P.; Zhou, D.W.; Wan, L. Research Progress in LiBH4 for Hydrogen Storage: a Review. J. Hydrogen Energy 2011, 36: 14512-14526.
  • [16] Li, C.; Zhou, D.W.; Peng, P.; Wan, L. First-principles Calculation on Dehydrogenating Properties of LiBH4-X (X=O, F, Cl) Systems. Acta Chim. Sin. 2012, 70(1): 71-77.
  • [17] Schlapbach, L.; Zǔttel, A. Hydrogen Storage Materials for Mobile Application. Nature 2001, 414: 353-358.
  • [18] Lei, H. J.; Duan, H.; Xing, P. F.; Tang, Y. J. Synthesis and Application of ADN Oxidizer. Aerosol Sci. Technol. 2011, 10: 1165-1169.
  • [19] Steinbach, T.; Wahlen, C.; Wurm, F.R.; Poly (Phosphonate)-mediated Horner-Wadsworth-Emmons Reactions. Polymer Chemistry 2015, 6(7): 1192-1202.
  • [20] He, L.M.; Xiao, Z.L.; Jing, D.Q.; Dong, F.Y. Synthesis and Application of ADN Oxidizer in Propellant. Chinese J. Energ. Mater. 2003, 11(3): 170-173. (in Chinese)
  • [21] Cui, Q.Z.; Jiao, Q.J.; Ren, H.; Yang, R.J. Study on Moisture-resistant Black Powder. Chinese J. Energ. Mater. 2007, 15(2): 114-117. (in Chinese)
  • [22] Jenkin, W.C. Method of Encapsulation of Lithium Borohydride. Patent US 3070469, 1962.
  • [23] Nan, H.; Guo, X.; Sun, P.P.; Niu, Y.L.; Tian, X. The Influence of Coating Material on the Impact Sensitivity of AP Powder. Initiators & Pyrotechnics 2013, 6: 39-41.
  • [24] Jiang, B.B. Preparation of Core-shell Polycarbonate/BaS04 Submicron Composite Particles. Chemical Reaction Engineering and Technology 2005, 21(3): 285-288. (in Chinese)
  • [25] Shu, Y.J.; Ding, X.Y.; Chen, Z.Q.; Wu, M.J.; Liu, N.; Li, Y.N.; Zhai, L.J.; Xu, L.P. Study on Surface Structural Characterization and Stability of Coated Lithium Borohydride. Chinese J. Explos. Propellants 2015, 38(2): 30-34. (in Chinese)
  • [26] Li, J.C.; Jiao, Q.J.; Ren, H.; Wang, L.X.; Zhao, W.D. RDX Coated with Hyantoin/Triazines Composite Bonding Agent. Chinese J. Energ. Mater. 2008, 16(1): 56-60. (in Chinese)
  • [27] Gomes, S.; Hagemann, H.; Yvon, K. Lithium Boro-hydride LiBH4: II. Raman Spectroscopy. J. Alloys Compd. 2002, 346: 206-210.
  • [28] Racu, A.M.; Schoenes, J.; Lodziana, Z.; Borgschulte, A.; Züttel, A. High-resolution Raman Spectroscopy Study of Phonon Modes in LiBH4 and LiBD4. J. Phys Chem A. 2008, 112: 9716-9722.
  • [29] Zhang, Y.; Zhang, W.S.; Wang, A.Q.; Sun, L.X.; Fan, M.Q.; Chu, H.L.; Sun, J.C.; Zhang, T. LiBH4 Nanoparticles Supported by Disordered Mesoporous Carbon: Hydrogen Storage Performances and Destabilization Mechanisms. J. Hydrogen Energy 2007, 32: 3976-3980.
  • [30] Zhang, B.J.; Liu, B.H. Hydrogen Desorption from LiBH4 Destabilized by Chlorides of Transition Metal Fe, Co, and Ni. J. Hydrogen Energy 2010, 35: 7288-7294.
  • [31] Chen, P.; Zhao, F.Q.; Yin, C.M. Study on Thermal Decomposition Property of RDX/AP/HTPB Propellant. J. Solid Rocket Technology 2002, 25(2): 52-55. (in Chinese)
  • [32] Chen, D.; Huang, S.L.; Zhang, Q.; Yu, Q.; Zhou, X.Q.; Li, H.Z.; Li, J.S. Two Nitrogen-rich Ni(II) Coordination Compounds Based on 5,5’-Azotetrazole: Synthesis, Characterization and Effect on Thermal Decomposition for RDX, HMX and AP. RSC Advances 2015, 5: 32872.
  • [33] Brill, T.B.; Brush, P.J. Condensed Phase Chemistry of Explosives and Propellants at High Temperature: HMX, RDX and BAMO. Philos. Trans. R. Soc. 1992, 339: 377-385.
  • [34] Palopoli, S.F.; Brill, T.B. Thermal Decomposition of Energetic Materials 52. On the Foam Zone and Surface Chemistry of Rapidly Decomposing HMX. Combust. Flame 1991, 87(1): 45-60.
  • [35] Bouaricha, S.; Huot, J.; Guay, D.; Schulz, R. Reactivity during Cycling of Nanocrystalline Mg-based Hydrogen Storage Compounds. Int. J. Hydrogen Energy 2002, 27(9): 909-913.
  • [36] Soulié, J.Ph.; Renaudin, G.; Cerný, R.; Yvon, K. Lithium Boro-hydride LiBH4: I. Crystal Structure. J. Alloys Compd. 2002, 346: 200-205.
  • [37] Hagemann, H.; Gomes, S.; Renaudin, G.; Yvon, K. Raman Studies of Reorientation Motions of [BH4]− Anions in Alkali Borohydrides. J. Alloys. Compd. 2004, 363: 129-132.
  • [38] Orimo, S.; Nakamori, Y.; Züttel, A. Material Properties of MBH4 (M =Li, Na, and K). Mater. Sci. Eng. B. 2004, 108: 51-53.
  • [39] Xue, B.; Ma, H.H.; Shen, Z.W. Air Explosion Characteristics of a Novel TiH2/RDX Composite Explosive. Combust. Explos. Shock Wave (Engl. Transl.) 2015, 51(4): 488-494.
  • [40] Liu, R.; Yang, L.; Zhou, Z.N.; Zhang, T.L. Thermal Stability and Sensitivity of RDX-based Aluminized Explosives. J. Therm. Anal. Calorim. 2013; DOI 10.1007/s10973-013-3468-6.
  • [41] Liu, L.L.; He, G.Q.; Wang, Y.H.; Liu, P.J. Factors Affecting the Measurement of the Percentage of Gaseous Products from Boron-based Fuel-rich Propellants. Cent. Eur. J. Energ. Mater. 2014, 11(1): 15-29.
  • [42] Luo, X.L.; Wang, M.J.; Yun, L.; Yang, J.; Chen, Y.S. Structure-dependent Activities of Cu2O Cubes in Thermal Decomposition of Ammonium Perchlorate. J. Phys. Chem. Solids 2016, 90: 1-6.
  • [43] Rosser, W.A.; Inami, S.H. Thermal Decomposition of Ammonium Perchlorate. Combust. Flame 1968, 12(5): 427-435.
  • [44] Lin, X.L.; Zhao, D.M.; Bi, F.Q.; Fan, X.Z.; Zhao, F.Q.; Zhang, G.F.; Zhang, W.Q.; Gao, Z.W. Synthesis, Characterization, Migration Studies and Combustion Catalytic Performances of Energetic Ionic Binuclear Ferrocene Compounds. J. Organomet. Chem. 2014, 762: 1-8.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56f6084b-9f66-4832-b407-9384a120d5fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.