Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study highlights the effectiveness of employing double-acting liberation to release Ni and Co from the complex phases of the low-grade nickel laterite. It includes the addition of concentrated sulphuric acid and NaF as well as the heat treatment prior to roasting and leaching processes to improve the destruction of the complex phases contained. The finding describes that dehydration of iron sulfate and decomposition of the lizardite at a lower temperature, 270°C, were occurred in the pre-treatment process, followed by hematite formation in the roasting process. It subsequently accelerated Ni and Co extraction in the pregnant solution and omitted Fe as the water-insoluble hematite in the residue when the leaching process was employed. The optimum leaching percentages of nickel and cobalt are 71.3% and 98.8%, serially, and were obtained at a roasting temperature of 700°C for 30 minutes with the addition of 3 wt.% sodium fluoride. This research provides essential contributions to the optimization of decomposition process for complex phases of in the low-grade nickel laterite at a lower temperature and to upsurge leaching percentage of Ni and Co by strictly suppressing Fe dissolution.
Wydawca
Czasopismo
Rocznik
Tom
Strony
285--298
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), KST B. J. Habibie, Tangerang Selatan, 15314, Indonesia
- Prof Johny Wahyuadi Laboratory, Department of Metallurgical and Materials Engineering, Universitas Indonesia, Depok, 16424, Indonesia
autor
- Department of Metallurgy Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon, Banten, Indonesia
autor
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), KST B. J. Habibie, Tangerang Selatan, 15314, Indonesia
autor
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), KST B. J. Habibie, Tangerang Selatan, 15314, Indonesia
autor
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), KST B. J. Habibie, Tangerang Selatan, 15314, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Jakarta, G.A. Siwabessy street, Kampus Baru UI Depok, 16425, Indonesia
autor
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), KST B. J. Habibie, Tangerang Selatan, 15314, Indonesia
autor
- Department of Metallurgy Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon, Banten, Indonesia
autor
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), KST B. J. Habibie, Tangerang Selatan, 15314, Indonesia
autor
- Prof Johny Wahyuadi Laboratory, Department of Metallurgical and Materials Engineering, Universitas Indonesia, Depok, 16424, Indonesia
Bibliografia
- [1] Ribeiro PPM, Neumann R, dos Santos ID, Rezende MC, Radino-Rouse P, Dutra AJB. Nickel carriers in laterite ores and their influence on the mechanism of nickel extraction by sulfation-roasting-leaching process. Miner Eng 2019;131(July 2018):90-7. https://doi.org/10.1016/j.mineng.2018.10.022.
- [2] Geological Survey US. Mineral commodity summaries 2021. U.S. Geological Survey; 2021.
- [3] Mayangsari W, Prasetyo AB. Phase transformation of limonite nickel ores with Na2SO4 addition in selective reduction process. IOP Conf Ser Mater Sci Eng 2017;202. https://doi.org/10.1088/1757-899X/202/1/012016.
- [4] Mayangsari W, Prasetyo AB. Proses reduksi selektif bijih nikel limonit menggunakan zat aditif CaSO4. Metalurgi 2016; 1:7-18.
- [5] Whittington BI, Muir D. Pressure acid leaching of nickel laterites: a review. Miner Process Extr Metall Rev 2000;21(6): 527-99. https://doi.org/10.1080/08827500008914177.
- [6] McDonald RG, Whittington BI. Atmospheric acid leaching of nickel laterites review. Part I. Sulphuric acid technologies. Hydrometallurgy 2008;91(1-4):35-55. https://doi.org/10.1016/j.hydromet.2007.11.009.
- [7] McDonald RG, Whittington BI. Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies. Hydrometallurgy 2008;91(1-4):56-69. https://doi.org/10.1016/j.hydromet.2007.11.010.
- [8] Luo W, Feng Q, Ou L, Zhang G, Chen Y. Kinetics of saprolitic laterite leaching by sulphuric acid at atmospheric pressure. Miner Eng 2010;23:458-62.
- [9] Luo J, Li G, Rao M, Peng Z, Zhang Y, Jiang T. Atmospheric leaching characteristics of nickel and iron in limonitic laterite with sulfuric acid in the presence of sodium sulfite. Miner Eng 2015;78:38-44. https://doi.org/10.1016/j.mineng.2015.03.030.
- [10] Thubakgale CK, Mbaya RKK, Kabongo K. A study of atmospheric acid leaching of a south african nickel laterite. Miner Eng 2013;54:79-81. https://doi.org/10.1016/j.mineng.2013.04.006.
- [11] MacCarthy J, Addai-Mensah J, Nosrati A. Atmospheric acid leaching of siliceous goethitic Ni laterite ore: effect of solid loading and temperature. Miner Eng 2014;69:154-64. https://doi.org/10.1016/j.mineng.2014.08.005.
- [12] Oxley A, Barcza N. Hydro-pyro integration in the processing of nickel laterites. Miner Eng 2013. https://doi.org/10.1016/j.mineng.2013.02.012.
- [13] Borda J, Tores R. Nickel recovery from low-grade laterites : study of thermal pre- treatments to improve the efficiency of the hydrometallurgical process. J Sustain Min 2023;22(3). https://doi.org/10.46873/2300-3960.1389.
- [14] Basturkcu H, Acarkan N. Leaching behaviour of a Turkish lateritic ore in the present of additives. Physicochem Probl Miner Process 2016;52(1):112-23.
- [15] Febriana E, Tristiyan A, Mayangsari W, Budi Prasetiyo A. Kinetika dan Mekanisme Pelindian Nikel Dari Bijih Limonit: Pengaruh Waktu dan Temperatur. Metal Maj Ilmu dan Teknol 2018;33(2).
- [16] Swamy YV, Kar BB, Mohanty JK. Physico-chemical characterization and sulphatization roasting of low-grade nickelif- erous laterites. Hydrometallurgy 2003;69(1-3):89-98. https://doi.org/10.1016/S0304-386X(03)00027-6.
- [17] Xu Y, Xie Y, Yan L, Yang R. A new method for recovering valuable metals from low-grade nickeliferous oxide ores. Hydrometallurgy 2005;80:280-5. https://doi.org/10.1016/j.hydromet.2005.08.007.
- [18] Guo X, Li D, Park K-H, Tian Q, Wu Z. Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process. Hydrometallurgy 2009;99(3-4): 144-50.
- [19] Gao Y, et al. CO2 mineral sequestration and nickel recovery from laterite ore by using waste copperas. Fuel 2023;331(1): 125750. https://doi.org/10.1016/j.fuel.2022.125750.
- [20] He M, et al. Thermochemically driven layer structure collapse via sulfate roasting toward the selective extraction of lithium and cobalt from spent LiCoO2 batteries. J Power Sources 2023; 572:233094. https://doi.org/10.1016/j.jpowsour.2023.233094.
- [21] Jin X, et al. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas. Waste Manag 2023;165:189-98. https://doi.org/10.1016/j.wasman.2023.01.013.
- [22] Chen Yongming, et al. Selective extraction of valuable metals from spent EV power batteries using sulfation roasting and two stage leaching process. Sep Purif Technol 1 March 2021;258(Part 1):118078. https://doi.org/10.1016/j.sep-pur.2020.118078. vol. 1, p. 118078, 258AD. Get rights and content.
- [23] Ma B, Yang W, Pei Y, Wang C, Jin B. Effect of activation pretreatment of limonitic laterite ores using sodium fluoride and sulfuric acid on water leaching of nickel and cobalt. Hydrometallurgy 2017;169:411-7. https://doi.org/10.1016/j.hydromet.2017.02.026.
- [24] Zubryckyj N, Evans DJI, Mackiw VN. Preferential sulfation of nickel and cobalt in lateritic ores. J Met 1965;17(5):478-86. https://doi.org/10.1007/BF03378348.
- [25] Kar BB, V Swamy Y. Some aspects of nickel extraction from chromitiferous overburden by sulphatization roasting. Miner Eng 2000;13(14-15):1635-40.
- [26] Tian Q, Li D, Guo X, Shi W. Kinetics of sulphric acid curingroasting of nickel laterite for recovering nickel and cobalt. Asian J Chem 2013;25(5):2537-40. https://doi.org/10.14233/ajchem.2013.13447.
- [27] Yu D, Utigard TA, Barati M. Fluidized bed selective oxidation-sulfation roasting of nickel sulfide concentrate: Part II. Sulfation roasting. Metall Mater Trans B Process Metall Mater Process Sci 2014;45(2):662-74. https://doi.org/10.1007/s11663-013-9959-9.
- [28] Basturkcu H, Acarkan N. Separation of nickel and iron from lateritic ore using a digestion - roasting - leaching - precipitation process. Physicochem Probl Miner Process 2016; 52(2):564-74. https://doi.org/10.5277/ppmp160204.
- [29] Parlak TT, Yildiz K. Effects of sulfation roasting and sodium sulfate addition on dissolution of nickel and cobalt from laterite. Acta Phys Pol, A 2017;132(3):629-31. https://doi.org/10.12693/APhysPolA.132.629.
- [30] Wang W, Du S, Liu G, Tang J, Lu Y. Extraction of nickel from ramu laterite by sulphation roasting-water leaching. AIP Conf Proc 1879 2017;050004. https://doi.org/10.1063/1.5000474.
- [31] Ribeiro PPM, dos Santos ID, Neumann R, Fernandes A, Dutra AJB. Roasting and leaching behavior of nickel laterite ore. Metall Mater Trans B Process Metall Mater Process Sci 2021; 52(3):1739-54. https://doi.org/10.1007/s11663-021-02141-6.
- [32] Ma B, et al. Nonmolten state metalized reduction of saprolitic laterite ores: effective extraction and process optimization of nickel and iron. J Clean Prod 2020;256:120415. https://doi.org/10.1016/j.jclepro.2020.120415.
- [33] Ribeiro PPM, De Souza LCM, Neumann R, Dos Santos ID, Dutra AJB. Nickel and cobalt losses from laterite ore after the sulfation-roasting-leaching processing. J Mater Res Technol 2020;9(6):12404-15. https://doi.org/10.1016/j.jmrt.2020.08.082.
- [34] Landers M, Gilkes RJ, Wells M. Dissolution kinetics of dehydroxylated nickeliferous goethite from limonitic lateritic nickel ore. Appl Clay Sci 2009;42(3-4):615-24. https://doi.org/10.1016/j.clay.2008.05.002.
- [35] Nurjaman F, et al. Smelting of low-grade saprolitic nickel ore in Dc-Arc furnace. J Min Metall B Metall 2023;59(3):497-506. https://doi.org/10.2298/JMMB231110043N.
- [36] Santoro L, et al. Quantitative mineralogical evaluation of NiCo laterite ores through XRPD-QPA- and automated SEM- based approaches: the Wingellina (Western Australia) case study. J Geochem Explor 2021;223(June 2020):106695. https://doi.org/10.1016/j.gexplo.2020.106695.
- [37] Guo Q, Qu J, Qi T, Wei G, Han B. Activation pretreatment of limonitic laterite ores by alkali-roastingmethod using sodiumcarbonate. Miner Eng 2011;24(8):825-32.
- [38] Nurjaman F, Astuti W, Bahfie F, Suharno B. Study of selective reduction in lateritic nickel ore: saprolite versus limonite. Mater Today Proc 2021;44:1488-94. https://doi.org/10.1016/j.matpr.2020.11.687.
- [39] Jiang M, Sun T, Liu Z, Kou J, Liu N, Zhang S. Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process. Int J Miner Process 2013;123:32-8. https://doi.org/10.1016/j.minpro.2013.04.005.
- [40] Duman B, Can IB. Effects of staged-addition of acid on high NieCo recovery and low scale formation in HPAL of a lateritic ore. Hydrometallurgy 2022;213(December 2021). https://doi.org/10.1016/j.hydromet.2022.105935.
- [41] Paulo P, Ribeiro M, Souza LCM, Santos ID, Dutra AJB. Sulfation-roasting-leaching of Brazilian nickel laterite ore 2019;5(3):235-41. https://doi.org/10.15341/mese(2333-2581)/03.05.2019/007.
- [42] Ma B, Wang C, Yang W, Yang B, Zhang Y. Selective pressure leaching of Fe (II)-rich limonitic laterite ores from Indonesia using nitric acid. Miner Eng 2013;45:151-8.
- [43] Pradyot P. Handbook of inorganic chemicals. 2002.
- [44] Zboril R, Mashlan M, Papaefthymiou V, Hadjipanayis G. Thermal decomposition of Fe2(SO4)3: demonstration of Fe2O3 polymorphism. J Radioanal Nucl Chem 2003;255(3): 413-7. https://doi.org/10.1023/A:1022543323651.
- [45] Ma B, Wang C, Yang W, Yin F, Chen Y. Screening and reduction roasting of limonitic laterite and ammonia-carbonate leaching of nickel-cobalt to produce a high-grade iron concentrate. Miner Eng 2013;50-51:106-13. https://doi.org/10.1016/j.mineng.2013.06.014.
- [46] Yang W, Ma B, Li X, Hu D, Wang C, Wang H. Transferring behavior and reaction kinetics of saprolitic laterite during metalized reduction in the presence of calcium fluoride. Miner Eng 2022;176(November 2021):107353. https://doi.org/10.1016/j.mineng.2021.107353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56f0e8b1-ef57-4a60-a865-ad977986fa9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.