PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wytwarzanie ceramicznych powłok biomedycznych metodą zol-żel

Autorzy
Identyfikatory
Warianty tytułu
EN
Sol-gel preparation of biomedical ceramic coatings
Języki publikacji
PL
Abstrakty
PL
Praca dotyczy wytwarzania ceramicznych powłok biomedycznych metodą zol-żel i badań podstawowych właściwości tych powłok. Obejmuje ona opracowanie sposobów wytwarzania powłok tlenku tytanu, tlenku glinu i hydroksyapatytu, a także przeprowadzenie badań tych powłok w zależności od warunków wytwarzania. Zawiera także przykłady użycia metody zol-żel do wytworzenia tlenkowych, warstwowych powłok kompozytowych oraz warstwowej powłoki węgiel/hydroksyapatyt, w której warstwa węglowa została wytworzona metodą PACVD. Praca obejmuje ponadto opracowanie nowej metody wytwarzania powłok ceramicznych: wspomaganej plazmowo metody aerozol-żel. Istota tej metody polega na połączeniu techniki zol-żel z techniką plazmy niskotemperaturowej stosowaną do obróbki powierzchni. Opracowana metoda pozwala na przeprowadzenie w jednym reaktorze procesu wytwarzania powłok ceramicznych obejmującego przygotowanie (aktywację) powierzchni podłoża za pomocą obróbki plazmowej, nakładanie powłoki z aerozolu oraz obróbkę plazmową wytworzonej powłoki. Obróbka plazmowa powłok prowadzi do zagęszczania ich powierzchni i może zastąpić wygrzewanie, co zwiększa możliwości kształtowania właściwości wytwarzanych ceramicznych powłok biomedycznych. Rozprawa zawiera 7 rozdziałów, z których pierwsze dwa dotyczą danych literaturowych na temat biomateriałów i metody zol-żel oraz sformułowanie celu pracy, natomiast pozostałe przedstawiają prace własne autorki. Rozdział 3 prezentuje wyniki badań powłok tlenku tytanu, tlenku glinu i hydroksyapatytu obejmujące ich morfologię, budowę chemiczną i krystaliczną, właściwości ochronne i mechaniczne, a także badania oddziaływania ich powierzchni z krwią oraz odporności na zasiedlanie bakteriami E.Coli. Dodatkowo zamieszczono wyniki badań bioaktywności i właściwości fotokatalitycznych tlenku tytanu. Stwierdzono, że stosowany zakres zmienności parametrów wytwarzania pozwala na uzyskanie powłok o korzystnych cechach użytkowych. Rozdział 4 zawiera wyniki badań właściwości ochronnych i przyczepności powłok kompozytowych, wskazujące na poprawę tych właściwości w stosunku do powłok j ednoskładnikowych. Rozdział 5 dotyczy wspomaganej plazmowo metody aerozol-żel i obejmuje opis konstrukcji i działania reaktora oraz wyniki badań budowy chemicznej powłok tlenku tytanu, tlenku glinu i hydroksyapatytu wytwarzanych tą metodą. Prezentowana metoda jest przedmiotem zgłoszenia patentowego i stanowi nowość w skali światowej. Ostatnie dwa rozdziały prezentują najważniejsze wyniki badań i wnioski wynikające z rozprawy.
EN
The paper concerns a production of ceramic biomedical coatings by the sol-gel method and a study of the basic properties of these coatings. The work comprises a development of sol-gel methods for the synthesis of titanium oxide, alumina and hydroxyapatite coatings, as well as performing tests of these coatings properties and their dependence on the parameters of preparation. It also contains examples of an application of the sol-gel method to produce oxide sandwich composite coatings and carbon/hydroxyapatite sandwich coatings. In the latter case, carbon layers are synthesized with the plasma assisted chemical vapor deposition (PACVD) technique. The work further comprises a development of a new way of deposition of ceramic coatings, namely a plasma-enhanced aerosol-gel method. The idea of this method is to combine the sol-gel technique of deposition with the low temperature plasma processing of the sol-coated surface. The developed method allows one to carry out, in a single reactor, the entire manufacturing process comprising: substrate preparation (activation) by plasma treatment, aerosol deposition of ceramic coating and its plasma treatment. Plasma processing of the coatings leads to a densification of their surface and it is a process able to completely replace thermal annealing. It increases a likelihood of creating ceramic coatings having advantageous biomedical properties. The dissertation contains seven chapters. The first two refer to the literature on the subject of biomaterials and the sol-gel method, while the remaining ones present the author's own work. Chapter 3 presents results of morphology, chemical and crystalline structure studies, as well as those of mechanical, protective and biomedical properties of the titanium oxide, alumina and hydroxyapatite coatings. As far as biomedical studies are concerned, they comprise interaction of the coatings surface with blood and their resistance to the colonization by E.Coli bacteria. Additionally, test results of bioactivity and photocatalytic properties of titanium oxide are presented. It was found that the range of variation of operational parameters used in their production, allows one to obtain coatings with advantageous functional characteristic. Chapter 4 presents results of the protective properties and adhesion of composite coatings, indicating an improvement of these properties compared to the single component coating. Chapter 5 concerns the plasma enhanced aerosol-gel method, and it includes a description of the reactor, its construction and operation, as well as results of the studies on chemical structure of the titanium oxide, alumina and hydroxyapatite coatings produced by this method. The method presented is a subject of patent application and it is an innovation on the global scale. The last two chapters present the key findings and conclusions of the dissertation.
Rocznik
Tom
Strony
1--99
Opis fizyczny
Bibliogr. 122 poz., il. (w tym kolor.), wykr.
Twórcy
autor
  • Instytut Inżynierii Materiałowej Politechniki Łódzkiej
Bibliografia
  • [1] Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, 2004.
  • [2] Basu B., Katti D.S., Kumar A., Advanced Biomaterials: Fundamentals, Processing, and Applications. John Wiley & Sons, 2010.
  • [3] Nałęcz M., Błażewicz S., Stoch L., Biomateriały. Akademicka Oficyna Wydawnicza Exit, 2003.
  • [4] Łaskawiec J., Michalik R., Zagadnienia teoretyczne i aplikacyjne w implantach. Wydaw. Politechniki Śląskiej, 2002.
  • [5] Marciniak J., Biomateriały w chirurgii kostnej. Wydawnictwo Politechniki Śląskiej, 1992.
  • [6] Yaszemski M.J., Biomaterials in Orthopedics. CRC Press, 2004.
  • [7] Hildebrand H.F., Blanchemain N., Mayer G., Chai F., Lefebvre M., Boschin F., “Surface coatings for biological activation and functionalization of medical devices,” Surface and Coatings Technology, vol. 200, no. 22-23, 6318-6324, 2006.
  • [8] Thamaraiselvi T.V., Rajeswari S., “Biological evaluation of bioceramic materials - a review.,” Trends Biomater. Artif. Organs, vol. 18, no. 1, 9-17, 2004.
  • [9] Wright J.D., Sommerdijk N.A., Sol-Gel Materials: Chemistry and Applications. Gordon and Breach Science Publishers, 2001.
  • [10] Kasuga T., Kondo H., Nogami M., “Apatite formation on TiO2 in simulated body fluid,” Journal of Crystal Growth, vol. 235, no. 1, 235-240, 2002.
  • [11] Głuszek J., Tlenkowe powłoki ochronne otrzymywane metodą sol-gel. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 1998.
  • [12] Ebelmen J.J., “Sur les ethers silicigues,” CR Acad. Sci., vol. 19, 398-400, 1845.
  • [13] Geffken W., Berger E., U.S. Patent German Patent 7364111939.
  • [14] Dimitriev Y., Ivanova Y., Iordanova R., “History of sol-gel science and Technology (review),” Journal of the University of Chemical Technology and Metallurgy, vol. 43, no. 2, 181-192, 2008.
  • [15] Brinker C.J., Scherer G.W., Sol-Gel Science: The Physics and Chemistry of Sol- Gel Processing, 1st ed. Academic Press, 1990.
  • [16] Sakka S., Handbook of Sol-Gel Science and Technology : Processing Characterization and Applications, 1st ed. Springer, 2004.
  • [17] Wright J.D., Sommerdijk N.A.J.M., Sol-Gel Materials: Chemistry and Applications. Gordon and Breach Science Publishers, 2001.
  • [18] Langlet M., Vautey C., Mazeas N., “Some aspects of the aerosol-gel process,” Thin Solid Films, vol. 299, no. 1-2, 25-32, 1997.
  • [19] Langlet M., Vautey C., “Influence of the Deposition Parameters on the Characteristics of Aerosol-Gel Deposited Thin Films,” Journal of Sol-Gel Science and Technology, vol. 8, no. 1-3, 347-351, 1997.
  • [20] Biedunkiewicz A., Figiel P., Gabriel U., Sabara M., Lenart S., “Synthesis and characteristics of nanocrystalline materials in Ti, B, C and N containing system,” Centr.Eur.J.Phys., vol. 9, no. 2, 417-422, 2011.
  • [21] Sakka S., “The current state of sol-gel technology,” Journal of Sol-Gel Science and Technology, vol. 3, no. 2, 69-81, 1994.
  • [22] Aegerter M.A., Puetz J., Gasparro G., Al-Dahoudi N., “Versatile wet deposition techniques for functional oxide coatings,” Optical Materials, vol. 26, no. 2, 155-162, 2004.
  • [23] Liu H., Yang W., Ma Y., Cao Y., Yao J., Zhang J., Hu T., “Synthesis and Characterization of Titania Prepared by Using a Photoassisted Sol-Gel Method,” Langmuir, vol. 19, no. 7, 3001-3005, 2003.
  • [24] Yu J.J., Zhang J.-Y., Boyd I.W., “Formation of stable zirconium oxide on silicon by photo-assisted sol-gel processing,” Applied Surface Science, vol. 186, no. 1-4, 190-194, 2002.
  • [25] Bao S.J., Liang Y.Y, Li H.L., “Synthesis and electrochemical properties of LiMn2O4 by microwave-assisted sol–gel method,” Materials Letters, vol. 59, no. 28, 3761-3765, 2005.
  • [26] Hart J.N., Cervini R., Cheng Y.-B., Simon G.P., Spiccia L., “Formation of anatase TiO2 by microwave processing,” Solar Energy Materials and Solar Cells, vol. 84, no. 1-4, 135-143, 2004.
  • [27] Sumana K.S., Rao K.N., Krishna M., Murthy C.S.C., Passacantando M., Santucci S., Phani A.R., “Structural Modification of Sol-Gel Derived TiO2 Nanostructured Films Using Microwave Irradiation,” CORD Conference Proceedings, 1-6, 2011.
  • [28] Adraider Y., Pang Y.X., Nabhani F., Hodgson S.N., Sharp M.C., Al-Waidh A., “Deposition of alumina coatings on stainless steel by a combined laser/sol-gel technique,” Materials Letters, vol. 91, no. 0, 88-91, 2013.
  • [29] Mascia L., Zhang Z., “Dense outer layers formed by plasma treatments of silica coatings produced by the sol-gel method,” Journal of Materials Science, vol. 32, no. 3, 667-674, 1997.
  • [30] Ohsaki H., Shibayama Y., Yoshida N., Watanabe T., Kanemaru S., “Room-temperature crystallization of amorphous films by RF plasma treatment,” Thin Solid Films, vol. 517, no. 10, 3092-3095, 2009.
  • [31] Okrój W., Pietrzyk B., Klimek L., Nowik S., Walkowiak B., “Susceptibility of Al2O3 coating to bacterial colonization and blood plateles adherence,” in Abstract book, Zakopane, Poland, 2005, p. 125.
  • [32] Okrój W., Walkowiak-Przybyło M., Rośniak-Bak K., Klimek L., Walkowiak B., “Comparison of microscopic methods for evaluating platelet adhesion to biomaterial surfaces,” Acta Bioeng Biomech, vol. 11, no. 2, 45-49, 2009.
  • [33] Pietrzyk B., Okrój W., Walkowiak B., Klimek L., “Thrombocompatibility of sol-gel titanium dioxide coatings deposited on stainless steel substrate,” Advances in Applied Ceramics: Structural, Functional and Bioceramics, vol. 107, no. 5, 255-258, 2008.
  • [34] Oliver W.C., Pharr G.M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.,” J. Mater Res, vol. 7, 1564-1583, 1992.
  • [35] Kim H.M., Miyazaki T., Kokubo T., Nakamura T., “Revised Simulated Body Fluid,” Key Engineering Materials, vol. 192-195, no. Bioceramics 13, 47-50, 2001.
  • [36] Kokubo T., Takadama H., “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials, vol. 27, no. 15, 2907-2915, 2006.
  • [37] Sobczyk-Guzenda A., Pietrzyk B., Szymanowski H., Gazicki-Lipman M., Jakubowski W., “Photocatalytic activity of thin TiO2 films deposited using solgel and plasma enhanced chemical vapor deposition methods,” Ceramics International, vol. 39, no. 3, 2787-2794, 2013.
  • [38] Miszczak S., Gawroński Z., Pietrzyk B., “Morphology of multilayer Al203/TiO2 coatings deposited by the sol-gel technique,” Inżynieria Materiałowa, vol. 28, no. 3-4, 680-685, 2007.
  • [39] Pietrzyk B., Miszczak S., Chęcmanowski J., Gawroński Z., “The influence of deposition conditions of TiO2 sol-gel coatings on properties of Co-Cr-Mo alloy,” Inżynieria Materiałowa, vol. 25, no. 3 (140), 284-286, 2004.
  • [40] Pietrzyk B., Klimek L., “The influence of heat treatment temperature on bioactivity of TiO2 sol-gel coatings,” Annals of Transplantation, vol. 9, no. 1A, 10-14, 2004.
  • [41] Alam M.J., Cameron D.C., “Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method,” Journal of Sol-Gel Science and Technology, vol. 25, no. 2, 137-145, 2002.
  • [42] Djaoued Y., Badilescu S., Ashrit P.V., Bersani D., Lottici P.P., Brüning R., “Low Temperature Sol-Gel Preparation of Nanocrystalline TiO2 Thin Films,” Journal of Sol-Gel Science and Technology, vol. 24, no. 3, 247-254, 2002.
  • [43] Hanaor D.A.H., Sorrell C.C., “Review of the anatase to rutile phase transformation,” J Mater Sci, vol. 46, no. 4, 855-874, 2011.
  • [44] Chen X., Mao S.S., “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev., vol. 107, no. 7, 2891-2959, 2007.
  • [45] Ogden A., Corno J.A., Hong J.I., Fedorov A., Gole J.L., “Maintaining particle size in the transformation of anatase to rutile titania nanostructures,” Journal of Physics and Chemistry of Solids, vol. 69, no. 11, 2898-2906, 2008.
  • [46] Nikolić L.M., Radonjić L., Srdić V.V., “Effect of substrate type on nanostructured titania sol-gel coatings for sensors applications,” Ceramics International, vol. 31, no. 2, 261-266, 2005.
  • [47] Miszczak S., Gawroński Z., Pietrzyk B., “Wielowarstwowe żaroodporne powłoki tlenkowe wytwarzane metodą zol-żel,” Inżynieria Materiałowa, vol. 27, no. 3, 490-493, 2006.
  • [48] Radecka M., Właściwości półprzewodnikowe i fotoelektrochemiczne TiO2, vol. 77. Krakow: Polskie Towarzystwo Ceramiczne PAN, 2003.
  • [49] Brinker C.J., Scherer G.W., Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, 1990.
  • [50] Scherer G.W., “Sintering of Sol-Gel Films,” Journal of Sol-Gel Science and Technology, vol. 8, no. 1-3, 353-363, 1997.
  • [51] Wachtman J.B., Haber R.A., Ceramic Films and Coatings. Noyes Publ., 1993.
  • [52] Bauccio M., ASM engineered materials reference book. ASM International, 1994.
  • [53] Lide D.R., Ed., CRC Handbook of Chemistry and Physics 80th Edition, 80th ed. CRC Press, 1999.
  • [54] Taarea D., Bakhtiyarov S.I., “14 - General physical properties,” in Smithells Metals Reference Book (Eighth Edition), W.F. Gale, PhD, and P. T.C. Totemeier, Eds. Oxford: Butterworth-Heinemann, 2004, 1-45.
  • [55] Gorbet M.B., Sefton M.V., “Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes,” Biomaterials, vol. 25, no. 26, 5681-5703, 2004.
  • [56] Kokubo T., “Apatite formation on surfaces of ceramics, metals and polymers in body environment,” Acta Materialia, vol. 46, no. 7, 2519-2527, 1998.
  • [57] Pietrzyk B., Klimek L., Miszczak S., “Poprawa właściwości implantacyjnego stopu Co-Cr-Mo za pomocą powłoki TiO2 nakładanej metodą zol-żel,” Inżynieria Biomateriałów, vol. 7, no. 38-42, 146-147, 2004.
  • [58] Miyazaki T., Kim H.M., Kokubo T., Kato H., Nakamura N., Ohtsuki C., “Bonelike Apatite Formation on Niobium Oxide Gel in a Simulated Body Fluid,” Key Engineering Materials, vol. 192-195, 43-46, 2001.
  • [59] Nonami T., Taoda H., Hue N.T., Watanabe E., Iseda K., Tazawa M., Fukaya M., “Apatite Formation on TiO2 Photocatalyst Film in a Pseudo Body Solution,” Materials Research Bulletin, vol. 33, no. 1, 125-131, 1998.
  • [60] Uchida M., Kim H.M., Kokubo T., Miyaji F., Nakamura T., “Bonelike Apatite Formation Induced on Zirconia Gel in a Simulated Body Fluid and Its Modified Solutions,” Journal of the American Ceramic Society, vol. 84, no. 9, 2041-2044, 2001.
  • [61] Fujishima A., Honda K., “Electrochemical Photolysis of Water at a Semiconductor Electrode,” , Nature, vol. 238, no. 5358, 37-38, 1997.
  • [62] Cho D.L., Min H., Kim J.H., Cha G.S., Kim G.S., Kim B.H., Ohk S.H., “Photocatalytic Characteristics of TiO2 Thin Films Deposited by PECVD,” J. Ind. Eng. Chem., vol. 13, no. 3, 434-437, 2007.
  • [63] Sobczyk-Guzenda A., Gazicki-Lipman M., Szymanowski H., Kowalski J., Wojciechowski P., Halamus T., Tracz A., “Characterization of thin TiO2 films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications,” Thin Solid Films, vol. 517, no. 18, 5409-5414, 2009.
  • [64] Carp O., “Photoinduced reactivity of titanium dioxide,” Progress in Solid State Chemistry, vol. 32, no. 1-2, 33–177, 2004.
  • [65] Herrmann J.M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis Today, vol. 53, no. 1, 115-129, 1999.
  • [66] Mills A., Hunte S.L., “An overview of semiconductor photocatalysis,” Journal of Photochemistry and Photobiology A, vol. 108, no. 1, 1-35, 1997.
  • [67] Eshaghi A., Pakshir M., Mozaffarinia R., “Photoinduced properties of nanocrystalline TiO2 sol-gel derived thin films,” Bull Mater Sci, vol. 33, no. 4, 365-369, 2010.
  • [68] Fujishima A., Hashimoto K., Watanabe T., TiO2 Photocatalysis: Fundamentals and Applications. Bkc, Incorporated, 1999.
  • [69] Kern P., Schwaller P., Michler J., “Electrolytic deposition of titania films as interference coatings on biomedical implants: Microstructure, chemistry and nanomechanical properties,” Thin Solid Films, vol. 494, no. 1-2, 279-286, 2006.
  • [70] Santos E., Kuromoto N.K., Soares G.A., “Mechanical properties of titania films used as biomaterials,” Materials Chemistry and Physics, vol. 102, 92-97, 2007.
  • [71] Chuang L.C., Luo C.H., Yang S., “The structure and mechanical properties of thick rutile–TiO2 films using different coating treatments,” Applied Surface Science, vol. 258, no. 1, 297-303, 2011.
  • [72] Tsaousi A., Jones E., Case C.P., “The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles,” Mutat. Res., vol. 697, no. 1-2, 1-9, 2010.
  • [73] Farmer V.C., “The infrared spectra of minerals,” MIneralogic Soc. Monograph, no. 4, 137-181, 1974.
  • [74] Priya G.K., Padmaja P., Warrier K.G.K., Damodaran A.D., Aruldhas G., “Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy,” Journal of Materials Science Letters, vol. 16, no. 19, 1584-1587, 1997.
  • [75] Zu G., Shen J., Wei X., Ni X., Zhang Z., Wang J., Liu G.: “Preparation and characterization of monolithic alumina aerogels,” Journal of Non-Crystalline Solids, vol. 357, no. 15, 2903-2906, 2011.
  • [76] Urretavizcaya G., Cavalieri A.L., López J.M.P., Sobrados I., Sanz J.: “Thermal Evolution of Alumina Prepared by the Sol-Gel Technique,” Journal of Materials Synthesis and Processing, vol. 6, no. 1, 1-7, 1998.
  • [77] Oréfice R.L., Vasconcelos W.L.: “Sol-Gel Transition and Structural Evolution on Multicomponent Gels Derived from the Alumina-Silica System,” Journal of Sol- Gel Science and Technology, vol. 9, no. 3, 239-249, 1997.
  • [78] Vasconcelos D.C.L., Nunes E.H.M., Vasconcelos W.L., “AES and FTIR characterization of sol-gel alumina films,” Journal of Non-Crystalline Solids, vol. 358, no. 11, 1374-1379, 2012.
  • [79] Levin I., Brandon D., “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences,” Journal of the American Ceramic Society, vol. 81, no. 8, 1995-2012, 1998.
  • [80] Bahlawane N., Watanabe T., “New Sol-Gel Route for the Preparation of Pure α-Alumina at 950°C,” Journal of the American Ceramic Society, vol. 83, no. 9, 2324-2326, 2000.
  • [81] Pan C., Shen P., Chen S.Y., “Condensation, crystallization and coalescence of amorphous Al2O3 nanoparticles,” Journal of Crystal Growth, vol. 299, no. 2, 393-398, 2007.
  • [82] Nowik S., “Płytki krwi w kontakcie z warstwa Al2O3 na stali medycznej,” praca dyplomowa, Politechnika Lodzka, Lodz, 2005.
  • [83] Yoldas B., “Alumina sol preparation from alkoxides,” Ceramics Bulletin, vol. 53, no. 3, p. 289, 1975.
  • [84] Kobayashi Y., Ishizaka T., Kurokawa Y., “Preparation of alumina films by the sol-gel method,” J Mater Sci, vol. 40, no. 2, 263-283, 2005.
  • [85] Masalski J., Głuszek J., Zabrzeski J., Nitsch K., Głuszek P., “Improvement in corrosion resistance of the 316l stainless steel by means of Al2O3 coatings deposited by the sol-gel method,” Thin Solid Films, vol. 349, no. 1-2, 186-190, 1999.
  • [86] Özer N., Cronin J.P., Yao Y.J., Tomsia A.P., “Optical properties of sol-gel deposited Al2O3 films,” Solar Energy Materials and Solar Cells, vol. 59, no. 4, 355-366, 1999.
  • [87] Li T., Lee J., Kobayashi T., Aoki H., “Hydroxyapatite coating by dipping method, and bone bonding strength,” J Mater Sci: Mater Med, vol. 7, no. 6, 355-357, 1996.
  • [88] Norton J., Malik K.R., Darr J.A., Rehman I., “Recent developments in processing and surface modification of hydroxyapatite,” Advances in Applied Ceramics, vol. 105, no. 3, 113-139, 2006.
  • [89] Fathi M.H., Hanifi A., Mortazavi V., “Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder,” Journal of Materials Processing Technology, vol. 202, no. 1-3, 536-542, 2008.
  • [90] Lafon J.P., Champion E., Bernache-Assollant D., “Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition,” Journal of the European Ceramic Society, vol. 28, no. 1, 139-147, 2008.
  • [91] Tadic D., Peters F., Epple M., “Continuous synthesis of amorphous carbonated apatites,” Biomaterials, vol. 23, no. 12, 2553-2559, 2002.
  • [92] Pietrzyk B., Komorowski J., “Właściwości powłok hydroksyapatytowych wytwarzanych metodą zol-żel na podłożach tytanowych,” Inżynieria Materiałowa, vol. 31, no. 4, 1170-1172, 2010.
  • [93] Pietrzyk B., “Powłoki wapniowo-fosforanowe wytwarzane metodą zol-żel,” Inżynieria Materiałowa, vol. 29, no. 6, 664-666, 2008.
  • [94] Han G., Wu Y., Luo P., Qiu J., Chong T., “Dewetting observations of ultrathin metallic films,” Solid State Communications, vol. 126, no. 8, 479-484, 2003.
  • [95] Saramago B., “Thin liquid wetting films,” Current Opinion in Colloid & Interface Science, vol. 15, no. 5, 330-340, 2010.
  • [96] Wyart F.B., Daillant J., “Drying of solids wetted by thin liquid films,” Canadian Journal of Physics, vol. 68, no. 9, 1084-1088, 1990.
  • [97] Xue L., Han Y., “Pattern formation by dewetting of polymer thin film,” Progress in Polymer Science, vol. 36, no. 2, 269-293, 2011.
  • [98] Bertrand E., Blake T.D., De Coninck J., “Dynamics of dewetting,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 369, no. 1-3, 141-147, 2010.
  • [99] Xue L., Han Y., “Inhibition of dewetting of thin polymer films,” Progress in Materials Science, vol. 57, no. 6, 947-979, 2012.
  • [100] Hsieh M.F., Perng L.H., Chin T.S., “Hydroxyapatite coating on Ti6Al4V alloy using a sol-gel derived precursor,” Materials Chemistry and Physics, vol. 74, no. 3, 245-250, 2002.
  • [101] Wang J., Shaw L.L., “Synthesis of high purity hydroxyapatite nanopowder via sol-gel combustion process,” J Mater Sci Mater Med, vol. 20, no. 6, 1223-1227, 2009.
  • [102] Kim H.W., Kim H.E., Salih V., Knowles J.C., “Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses,” J Biomed Mater Res A, vol. 74, no. 3, 294-305, 2005.
  • [103] Liu D.M., Yang Q., Troczynski T., “Sol-gel hydroxyapatite coatings on stainless steel substrates,” Biomaterials, vol. 23, no. 3, 691-698, 2002.
  • [104] Fleet M.E., “Infrared spectra of carbonate apatites: ν2-Region bands,” Biomaterials, vol. 30, no. 8, 1473-1481, 2009.
  • [105] Landi E., Tampieri A., Celotti G., Vichi, L. Sandri M., “Influence of synthesis and sintering parameters on the characteristics of carbonate apatite,” Biomaterials, vol. 25, no. 10, 1763-1770, 2004.
  • [106] Uchida M., Ito A., Furukawa K.S., Nakamura K., Onimura Y., Oyane A., Ushida T., Yamane T., Tamaki T., Tateishi T., “Reduced platelet adhesion to titanium metal coated with apatite, albumin–apatite composite or laminin–apatite composite,” Biomaterials, vol. 26, no. 34, 6924-6931, 2005.
  • [107] Yoshihara H., Ozeki K., Masuzawa T., Aoki H., “Adsorptive property of albumin and streptokinase on sputtered hydroxyapatite films and its antithrombogenicity,” Applied Surface Science, vol. 255, no. 5, 2869-2873, 2008.
  • [108] Velisavljevic N., Vohra Y.K., “Bioceramic hydroxyapatite at high pressures,” Applied Physics Letters, vol. 82, no. 24, 4271-4273, 2003.
  • [109] Miszczak S., Pietrzyk B., Gawroński Z., “Protective properties of composite oxide coatings deposited by sol-gel method,” Powder Metall Met Ceram, vol. 50, no. 5-6, 295-300, 2011.
  • [110] Miszczak S., Pietrzyk B., Sawicki J., “Przyczepność wielowarstwowych powłok tlenkowych Al2O3-TiO2 otrzymywanych metodą zol-żel,” Inżynieria Materiałowa, vol. 27, no. 5, 1128-1131, 2006.
  • [111] Kim H.W., Koh Y.H., Li L.H., Lee S., Kim H.E., “Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method,” Biomaterials, vol. 25, no. 13, 2533-2538, 2004.
  • [112] Yang Y., Ong J.L., “Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate,” Journal of Biomedical Materials Research Part A, vol. 64A, no. 3, 509-516, 2003.
  • [113] Narayan R.J., “Hydroxyapatite–diamondlike carbon nanocomposite films,” Materials Science and Engineering: C, vol. 25, no. 3, 398-404, 2005.
  • [114] Pietrzyk B., Gawroński J., Błaszczyk T.: “Effect of carbon interlayer on protective properties of hydroxyapatite coating deposited on 316L stainless steel by sol-gel method,” Powder Metallurgy and Metal Ceramics, vol. 49, no. 7-8, 468-473, 2010.
  • [115] Gawroński J., Pietrzyk B., “Preliminary characteristic of composite coatings C/HAp produced respectively by RF PACVD and sol-gel methods,” Archives of Metallurgy and Materials, w druku.
  • [116] Langlet M., “Optically active coatings deposited from an ultrasonically generated aerosol,” Thin Solid Films, vol. 398-399, 71-77, 2001.
  • [117] Viitala R., Langlet M., Simola J., Lindén M., Rosenholm J., “Aerosol-gel deposition of doped titania thin films,” Thin Solid Films, vol. 368, no. 1, 35-40, 2000.
  • [118] Pietrzyk B., Miszczak S., Szymanowski H., Sobczyk-Guzenda A., Gawroński Z., “Plasma enhanced aerosol–gel method: a new way of preparing ceramic coatings,” J Sol-Gel Sci Technol, DOI: 10.1007/s10971-013-2986-9, w druku.
  • [119] Aronsson B.O., Lausma J., Kasemo B., “Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials,” Journal of Biomedical Materials Research, vol. 35, 49-73, 1997.
  • [120] Pietrzyk B., Miszczak S., Szymanowski H., Kucharski D., “Plasma enhanced aerosol-gel deposition of Al2O3 coatings,” Journal of the European Ceramic Society, DOI: 10.1016/j.jeurceramsoc.2013.02.012, w druku.
  • [121] Szymanowski H., Zabeida O., Klemberg-Sapieha J.E., Martinu L., “Optical properties and microstructure of plasma deposited Ta2O5 and Nb2O5 films,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 23, no. 2, 241-247, 2005.
  • [122] Urlaub R., Posset U., Thull R., “FT-IR spectroscopic investigations on sol-gelderived coatings from acid-modified titanium alkoxides,” Journal of Non- Crystalline Solids, vol. 265, no. 3, 276-284, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56efb2f0-b11a-4f8e-81a4-eebb39dda933
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.