PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Building Material Recognition and Feature Extraction Using Small CCD Sensor and Image Analysis and Clustering Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozpoznawanie materiałów budowlanych i ekstrakcja cech przy użyciu małego czujnika CCD oraz technik analizy obrazu i klastrowania
Języki publikacji
EN
Abstrakty
EN
Heritage Building material recognition is the process of classifying building materials based on their visual appearance. It is important in construction, urban planning, and archaeology. Image analysis is a common approach, starting with acquiring RGB images, then extracting features using techniques such as colour histograms and texture analysis, and clustering the materials into groups using algorithms like k-means. Finally, the materials are classified into categories using classifiers like decision trees, SVM, or neural networks. Image analysis is a useful tool for building material recognition, as it allows for accurate classification of building materials based on their visual characteristics.
Rocznik
Strony
229--236
Opis fizyczny
Bibliogr. 24 poz., rys., zdj.
Twórcy
  • Department of Earth Sciences, University of Pisa, Via S. Maria 53 - 56126, Pisa, Italy
  • Department of Earth Sciences, University of Pisa, Via S. Maria 53 - 56126, Pisa, Italy
  • Department of Prehistory, Archeology and Ancient History University of Valencia Av. Blasco Ibáñez 28 - 46010, Valencia, Spain
  • Department of Earth Sciences, University of Pisa, Via S. Maria 53 - 56126, Pisa, Italy
Bibliografia
  • 1. X.-W. Ye, C.-Z. Dong, T. Liu, A review of machine vision-based structural health monitoring: methodologies and applications, J. Sensors. 2016 (2016).
  • 2. M. Egmont-Petersen, D. de Ridder, H. Handels, Image processing with neural networks—a review, Pattern Recognit. 35 (2002) 2279–2301.
  • 3. R.M. Haralick, L.G. Shapiro, Image segmentation techniques, Comput. Vision, Graph. Image Process. 29 (1985) 100–132.
  • 4. H. Zhang, J.E. Fritts, S.A. Goldman, Image segmentation evaluation: A survey of unsupervised methods, Comput. Vis. Image Underst. 110 (2008) 260–280.
  • 5. N. Senthilkumaran, R. Rajesh, Image segmentation-a survey of soft computing approaches, in: 2009 Int. Conf. Adv. Recent Technol. Commun. Comput., IEEE, 2009: pp. 844–846.
  • 6. P. Geladi, H.F. Grahn, Multivariate image analysis, Encycl. Anal. Chem. Appl. Theory Instrum. (2006).
  • 7. L. Santoro, M. Lezzerini, A. Aquino, G. Domenighini, S. Pagnotta, A Novel Method for Evaluation of Ore Minerals Based on Optical Microscopy and Image Analysis: Preliminary Results, Minerals. 12 (2022) 1348. https://doi.org/10.3390/min12111348.
  • 8. S. Pagnotta, A. Aquino, M. Lezzerini, Image Segmentation for Reflected-Light Microscopy: Some Theoretical Approaches, in: IOP Conf. Ser. Earth Environ. Sci., IOP Publishing, 2021: p. 12121.
  • 9. G.S. Senesi, B. Campanella, E. Grifoni, S. Legnaioli, G. Lorenzetti, S. Pagnotta, F. Poggialini, V. Palleschi, O. De Pascale, Double-pulse micro-laser-induced breakdown spectroscopy applied tothree dimensional mapping of stonemonumentsamples, in: IMEKO Int. Conf. Metrol. Archaeol. Cult. Heritage, MetroArchaeo 2017, 2019.
  • 10. S. Pagnotta, S. Legnaioli, B. Campanella, E. Grifoni, M. Lezzerini, G. Lorenzetti, V. Palleschi, F. Poggialini, S. Raneri, Micro-chemical evaluation of ancient potsherds by μ-LIBS scanning on thin section negatives, Mediterr. Archaeol. Archaeom. 18 (2018) 171–178. https://doi.org/10.5281/zenodo.1285906.
  • 11. S. Pagnotta, M. Lezzerini, B. Campanella, G. Gallello, E. Grifoni, S. Legnaioli, G. Lorenzetti, F. Poggialini, S. Raneri, A. Safi, V. Palleschi, Fast quantitative elemental mapping of highly- inhomogeneous materials by micro-Laser-Induced Breakdown Spectroscopy, Spectrochim. Acta - Part B At. Spectrosc. 146 (2018). https://doi.org/10.1016/j.sab.2018.04.018.
  • 12. S. Lee, J. Suh, Y. Choi, Review of smartphone applications for geoscience: current status, limitations, and future perspectives, Earth Sci. Informatics. 11 (2018) 463–486.
  • 13. C. Daffara, G. Marchioro, D. Ambrosini, Smartphone diagnostics for cultural heritage, in: Opt. Arts, Archit. Archaeol. VII, SPIE, 2019: pp. 260–270.
  • 14. M. Ramacciotti, G. Gallello, M. Lezzerini, S. Pagnotta, A. Aquino, L. Alapont, J. Antonio Martín Ruiz, A. Pérez-Malumbres Landa, R. Hiraldo Aguilera, D. Godoy Ruiz, A. Morales-Rubio, M. Luisa Cervera, A. Pastor, Smartphone application for ancient mortars identification developed by a multianalytical approach, J. Archaeol. Sci. Reports. 43 (2022). https://doi.org/10.1016/j.jasrep.2022.103433.
  • 15. P.D.R. Raju, G. Neelima, Image segmentation by using histogram thresholding, Int. J. Comput. Sci. Eng. Technol. 2 (2012) 776–779.
  • 16. G.W. Zack, W.E. Rogers, S.A. Latt, Automatic measurement of sister chromatid exchange frequency., J. Histochem. Cytochem. 25 (1977) 741–753.
  • 17. N. Dhanachandra, K. Manglem, Y.J. Chanu, Image segmentation using K-means clustering algorithm and subtractive clustering algorithm, Procedia Comput. Sci. 54 (2015) 764–771.
  • 18. T. Kohonen, The self-organizing map, Neurocomputing. 21 (1998) 1–6.
  • 19. C. Thum, Measurement of the entropy of an image with application to image focusing, Opt. Acta Int. J. Opt. 31 (1984) 203–211.
  • 20. D.-C. Chang, W.-R. Wu, Image contrast enhancement based on a histogram transformation of local standard deviation, IEEE Trans. Med. Imaging. 17 (1998) 518–531.
  • 21. A. Ranganath, M.R. Senapati, P.K. Sahu, Estimating the fractal dimension of images using pixel range calculation technique, Vis. Comput. 37 (2021) 635–650.
  • 22. N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man. Cybern. 9 (1979) 62–66.
  • 23. E. De Bodt, M. Cottrell, M. Verleysen, Statistical tools to assess the reliability of self-organizing maps, Neural Networks. 15 (2002) 967–978.
  • 24. A. Amura, A. Aldini, S. Pagnotta, E. Salerno, A. Tonazzini, P. Triolo, Analysis of Diagnostic Images of Artworks and Feature Extraction: Design of a Methodology, J. Imaging. 7 (2021) 53.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56e789b8-ff41-4311-987b-da6e5afeb3bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.