PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of Physical Properties of Viscose using Nano GEO2 as Doping Material

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The properties of viscose\TiO2 and viscose\TiO2\germanium dioxide (GeO2) are investigated and compared. The elemental mapping analysis using a field emission scanning electron microscope (FESEM) shows the excellent distribution of nanomaterials, while the energy dispersive X-ray (EDX) confirms its existence. The 500 s cycle of rubbing test indicates that the abrasion resistance of treated samples improves significantly. In addition, the doping of nano GeO2 enhances the strength of the treated samples. Furthermore, the thermal behavior of the treated samples, characterized by differential scanning calorimeter (DSC), results in a higher crystallization temperature and doping GeO2 increases the thermal properties of viscose in comparison with nano TiO2. The study of ultraviolet blocking indicates that doping GeO2 can improve the transmission of ultraviolet even from TiO2.
Słowa kluczowe
Rocznik
Strony
243--247
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Department of Management, Yazd Branch, Islamic Azad University, Yazd, Iran
  • Department of Management, Yazd Branch, Islamic Azad University, Yazd, Iran
  • Department of Design and Clothing, Yazd Branch, Islamic Azad University, Yazd, Iran
Bibliografia
  • [1] Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., Mirjalili, M. (2014). Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose, 21(5), 3813–3827.
  • [2] Yadav, A., Prasad, V., Kathe, A. A., Raj, S., Yadav, D., et al. (2006). Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science, 29(6), 641–645.
  • [3] Mohamadiyan, M., Zohoori, S., Davodiroknabadi A. (2020). Enhancing electro conductivity, antibacterial and UV blocking of cotton fabric by using graphene/zirconium dioxide nano composite. Indian Journal of Fibre & Textile Research, 45(2), 207–210.
  • [4] Memon, H., Yasin, S., Khoso, N. A., Memon, S. (2015). Study of wrinkle resistant, breathable, anti-UV nanocoated woven polyester fabric. Surface Review and Letters, 23(03), 1650003.
  • [5] Memon, H., Wang, H., Yasin, S., Halepoto, A. (2018). Influence of incorporating silver nanoparticles in protease treatment on fiber friction, antistatic, and antibacterial properties of wool fibers. Journal of Chemistry, 2018, 4845687.
  • [6] Yu, L., Memon, H., Bhavsar, P., Yasin, S. (2016). Fabrication of alginate fibers loaded with silver nanoparticles biosynthesized via Dolcetto grape leaves (Vitis vinifera cv.): Morphological, antimicrobial characterization and in vitro release studies. Materials Focus, 5(3), 216–221.
  • [7] Zhao, J., Ge, K., Zhao, L., Zhang, S., Zeng, Y. (2017). Enhanced photocatalytic properties of CdS -decorated BiPO4 heterogeneous semiconductor catalyst under UV-light irradiation. Journal of Alloys and Compounds, 729, 189–197.
  • [8] Bekrani, M., Zohoori, S., Davodiroknabadi, A. (2019). Producing multifunctional cotton fabrics using nano CeO2 doped with nano TiO2 and ZnO. Autex Research Journal.
  • [9] Derakhshan, S. J., Karimi, L., Zohoori, S., Davodiroknabadi, A., Lessani, L. (2018). Antibacterial and self-cleaning properties of cotton fabric treated with TiO2/Pt. Indian Journal of Fibre and Textile Research, 43, 344–351.
  • [10] Karimi, L., Zohoori, S. (2013). Superior photocatalytic degradation of azo dyes in aqueous solutions using TiO2/SrTiO3 nanocomposite. Journal of Nanostructure in Chemistry, 3(1), 32.
  • [11] Ayaziyazdi, S., Zohoori, S., Davodiroknabadi, A., Karimnejad, M. (2013). Electrospinning of polyamide fiber containing nano TiO2 and the effect of heat, setting on self-cleaning. Oriental Journal of Chemistry, 29, 427–431.
  • [12] Goncalves, G., Marques, P. A., Pinto, R. J., Trindade, T., Neto, C. P. (2009). Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Composites Science and Technology, 69(7), 1051–1056.
  • [13] Moafi, H. F., Shojaie, A. F., Zanjanchi, M. A., (2010). The comparison of photocatalytic activity of synthesized TiO2 and ZrO2 nanosize onto wool fibers. Applied Surface Science, 256(13), 4310–4316.
  • [14] Zohoori, S., Karimi, L., Nazari, A. (2014). Photocatalytic self-cleaning synergism optimization of cotton fabric using nano SrTiO3 and nano TiO2. Fibres and Textiles in Eastern Europe, 22, 91–95.
  • [15] Wang, C., Wang, Y., Zhang, L., Chen, D. (2017). Effect of GeO2 on the lasing performance of Yb: Phosphate glass fiber. Optical Materials, 64, 208–211.
  • [16] Wang, X., Wang, L., Fu, X., Jing, C, Yue, F., et al. (2017). Thermal behaviors of stainless steel tube based GeO2 ATR hollow fibers for transmitting CO2 laser radiations. Optics & Laser Technology, 95, 42–45.
  • [17] Zhong, N., Zhao, M., Zhong, L., Liao, Q., Zhu, X., et al. (2016). A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2. Biosensors and Bioelectronics, 85, 876–882.
  • [18] Yang, Q., Sun, T., Yu, J. Y., Ma, J. X. (2016). Electrospinning of GeO2–C fibers and electrochemical application in lithium-ion batteries. Chinese Chemical Letters, 27(3), 412–416.
  • [19] Wang, C.-C., Chen, C. C. (2005). Physical properties of crosslinked cellulose catalyzed with nano titanium dioxide. Journal of Applied Polymer Science, 97(6), 2450–2456.
  • [20] Chokshi, S., Gohil, P., Patel, D. (2020). Experimental investigations of bamboo, cotton and viscose rayon fiber reinforced Unidirectional composites. Materials Today: Proceedings,28, 498–503.
  • [21] Liu, F., Wang, S., Chen, S. (2020). Adsorption behavior of Au(III) and Pd(II) on persimmon tannin functionalized viscose fiber and the mechanism. International Journal of Biological Macromolecules, 152, 1242–1251.
  • [22] Zhang, X., Xia, Y., Yan, X., Shi, M. (2018). Efficient suppression of flammability in flame retardant viscose fiber through incorporating with alginate fiber. Materials Letters, 215, 106–109.
  • [23] Liu, F., Zhou, L., Tao, L., Qian, L., Yu, G. (2020). Adsorption behavior and mechanism of Au(III) on caffeic acid functionalized viscose staple fibers. Chemosphere, 253, 126704.
  • [24] Rehan, M., Khattab, T. A., Barohum, A., Gätjen, L., Wilken, R. (2018). Development of Ag/AgX (X = Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohydrate Polymers, 197, 227–236.
  • [25] Xia, G., Zhou, X., Hu, J., Sun, Z., Yao, J., et al. (2019). Simultaneous removal of carbon disulfide and hydrogen sulfide from viscose fibre waste gas with a biotrickling filter in pilot scale. Journal of Cleaner Production, 230, 21–28.
  • [26] Saleemi, S., Naveed, T., Riaz, T., Memon, H., Awan, J. A., et al. (2020). Surface functionalization of cotton and PC fabrics using SiO2 and ZnO nanoparticles for durable flame retardant properties. Coatings, 10(2), 124.
  • [27] Filho, F. d. C. G, da Luz, F. S., Oliveira, M. S., Pereira, A. C., Costa, U. O, et al. (2020). Thermal behavior of graphene oxide-coated piassava fiber and their epoxy composites. Journal of Materials Research and Technology, 9(3), 5343–5351.
  • [28] Gradys, A. (2017). Geometrical effects during crystallization under confinement in electrospun core-shell fibers. DSC study of crystallization kinetics. Polymer, 108, 383–394.
  • [29] Nawrocka, A., Szymańska-Chargot, M., Miś, A., Wilczewska, A. Z., Markiewica, K. H. (2017). Effect of dietary fibre polysaccharides on structure and thermal properties of gluten proteins – A study on gluten dough with application of FT-Raman spectroscopy, TGA and DSC. Food Hydrocolloids, 69, 410–421.
  • [30] Revanth, J. S., Madhav, V. S., Sai, Y. K., Krishna, D. V., Srividya, K., et al. (2020). TGA and DSC analysis of vinyl ester reinforced by Vetiveria zizanioides, jute and glass fiber. Materials Today: Proceedings,26, 460–465.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56e6b866-efb4-4b73-a5da-e91652e4430a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.