PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

An advanced layered converter with fuzzy logic management for PV arrays

Wybrane pełne teksty z tego czasopisma
Identyfikatory
ISBN
10.15199/48.2023.08.43
Warianty tytułu
PL
(Zaawansowany konwerter warstwowy z zarządzaniem logiką rozmytą dla paneli fotowoltaicznych
Języki publikacji
EN
Abstrakty
EN
Due to its potential in the industrial sector, photovoltaic energy transmission has posed a fascinating challenge in recent decades. The utilisation of line transformers, which have a variety of problems including substantial voltage dips, expensive installation costs, and higher load losses, is one of the most urgent difficulties with such a system. This paper provides an alternate method based on a high-gain DC/DC interleaved boost converter with a low input voltage, a high input current, and an output voltage that is more than three times that of the typical boost converter. The input current is split over the three phases of the interleaved converter; as a result, the current stress on the circuit and the semiconductor devices is decreased, which adds to a decrease in total losses. In addition, the voltage stress is minimised compared to the interleaved converter's high output voltage. Additionally, a Maximum Power Point Tracking (MPPT) controller based on fuzzy logic control (FLC) is intended to guarantee that the PV system performs at peak efficiency. Lastly, simulation studies using the MATLAB Simulink environment are shown to demonstrate the efficacy of the suggested architecture.
PL
Ze względu na swój potencjał w sektorze przemysłowym fotowoltaiczna transmisja energii stanowiła fascynujące wyzwanie w ostatnich dziesięcioleciach. Wykorzystanie transformatorów liniowych, z którymi wiąże się wiele problemów, w tym znaczne spadki napięcia, wysokie koszty instalacji i większe straty obciążenia, jest jedną z najpilniejszych trudności związanych z takim systemem. W tym artykule przedstawiono alternatywną metodę opartą na przetwornicy podwyższającej napięcie DC/DC z przeplotem o wysokim wzmocnieniu, przy niskim napięciu wejściowym, wysokim prądzie wejściowym i napięciu wyjściowym, które jest ponad trzykrotnie większe niż w przypadku typowej przetwornicy podwyższającej napięcie. Prąd wejściowy jest rozdzielany na trzy fazy konwertera z przeplotem; w rezultacie zmniejsza się obciążenie prądowe obwodu i urządzeń półprzewodnikowych, co przyczynia się do zmniejszenia całkowitych strat. Ponadto napięcie napięciowe jest zminimalizowane w porównaniu z wysokim napięciem wyjściowym konwertera z przeplotem. Dodatkowo kontroler śledzenia punktu mocy maksymalnej (MPPT) oparty na sterowaniu logiką rozmytą (FLC) ma zagwarantować, że system fotowoltaiczny działa z maksymalną wydajnością. Na koniec pokazano, że badania symulacyjne z wykorzystaniem środowiska MATLAB Simulink demonstrują skuteczność sugerowanej architektury.
Rocznik
Strony
245--250
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • LAAS-National Polytechnic school-Maurice Audin ENP ORAN, Algeria
  • LAAS-National Polytechnic school-Maurice Audin ENP ORAN, Algeria
  • University of Hertfordshire (U.K.)
Bibliografia
  • [1] A. Alzahrani, “Scholars’ Mine Scholars’ Mine Doctoral Dissertations Student Theses and Dissertations Advanced topologies of high-voltage-gain DC-DC boost Advanced topologies of high-voltage-gain DC-DC boost converters for renewable energy applications converters for renewable energy applications,” 2018.
  • [2] B. Sri Revathi, P. Mahalingam, and F. Gonzalez-Longatt, “Interleaved high gain DC-DC converter for integrating solar PV source to DC bus,” Solar Energy, vol. 188, pp. 924–934, Aug. 2019,
  • [3] M. Veerachary, “Switched L-C Cell Based Interleaved Boost Converter,” in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Dec. 2020, pp. 1–5.
  • [4] M. Altimania, A. Alzahrani, M. Ferdowsi, and P. Shamsi, “Operation and Analysis of Non-Isolated High-Voltage-Gain DC-DC Boost Converter with Voltage Multiplier in the DCM,” in 2019 IEEE Power and Energy Conference at Illinois (PECI), Feb. 2019, pp. 1–6.
  • [5] S. Farhani, A. N’Diaye, A. Djerdir, and F. Bacha, “Design and practical study of three phase interleaved boost converter for fuel cell electric vehicle,” J Power Sources, vol. 479, p. 228815, Dec. 2020
  • [6] K. Sabanci and S. Balci, “Development of an expression for the output voltage ripple of the DC-DC boost converter circuits by using particle swarm optimization algorithm,” Measurement, vol. 158, p. 107694, Jul. 2020,
  • [7] “A Three Phase Interleaved Boost Converter with L & C Voltage Extension Mechanism,” Tehnicki vjesnik - Technical Gazette, vol. 25, no. 1, Feb. 2018
  • [8] M. A. Harimon, A. Ponniran, A. N. Kasiran, and H. H. Hamzah, “A Study on 3-phase Interleaved DC-DC Boost Converter Structure and Operation for Input Current Stress Reduction,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 8, no. 4, pp. 1948–1953, 2017,
  • [9] S. Motahhir, A. el Ghzizal, and A. Derouich, “Modélisation et commande d’un panneau photovoltaïque dans l’environnement PSIM.
  • [10] Y. Chaibi, A. Allouhi, M. Malvoni, M. Salhi, and R. Saadani, “Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models,” Solar Energy, vol. 188, pp. 1102–1110, Aug. 2019,
  • [11] U. Yilmaz, A. Kircay, and S. Borekci, “PV system fuzzy logic MPPT method and PI control as a charge controller,” Renewable and Sustainable Energy Reviews, vol. 81. Elsevier Ltd, pp. 994–1001, Jan. 01, 2018.
  • [12] A. Ali et al., “Investigation of MPPT Techniques Under Uniform and Non-Uniform Solar Irradiation Condition–A Retrospection,” IEEE Access, vol. 8, pp. 127368–127392, 2020,
  • [13] B. Bendib, H. Belmili, and F. Krim, “A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 637–648, May 2015,
  • [14] J. Kumar, B. Rathor, and P. Bahrani, “Fuzzy and P&O MPPT Techniques for Stabilized the Efficiency of Solar PV System,” in 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Sep. 2018, pp. 259– 264.
  • [15] K. Yung Yap, C. R. Sarimuthu, and J. Mun-Yee Lim, “Artificial Intelligence Based MPPT Techniques for Solar Power System: A review,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 6, pp. 1043–1059, 2020,
  • [16] S. Samal, P. K. Barik, and S. K. Sahu, “Extraction of maximum power from a solar PV system using fuzzy controller based MPPT technique,” in 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Mar. 2018, pp. 1–6.
  • [17] S. Sumathi, L. Ashok Kumar, and P. Surekha, “Green Energy and Technology
  • [18] I. Yadav, S. K. Maurya, and G. K. Gupta, “A literature review on industrially accepted MPPT techniques for solar PV system,” International Journal of Electrical and Computer Engineering, vol. 10, no. 2. Institute of Advanced Engineering and Science, pp. 2117–2127, 2020.
  • [19] A. S. Samosir, H. Gusmedi, S. Purwiyanti, and E. Komalasari, “Modeling and Simulation of Fuzzy Logic based Maximum Power Point Tracking (MPPT) for PV Application,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, p. 1315, Jun. 2018,
  • [20] M. A. Abo-Sennah, M. A. El-Dabah, and A. E.-B. Mansour, “Maximum power point tracking techniques for photovoltaic systems: a comparative study,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, p. 57, Feb. 2021
  • [21] J. Kumar, B. Rathor, and P. Bahrani, “Fuzzy and P&O MPPT Techniques for Stabilized the Efficiency of Solar PV System,” in 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Sep. 2018, pp. 259– 264.
  • [22] A. Chaithanakulwat, “Track the maximum power of a photovoltaic to control a cascade five-level inverter a single-phase grid-connected with a fuzzy logic control,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 4, p. 1863, Dec. 2019
  • [23] A. A. AlZubaidi, L. Abdul Khaliq, H. Salman Hamad, W. Khalid Al-Azzawi, M. Sameer Jabbar, and T. Abdulwahhab Shihab, “MPPT implementation and simulation using developed P&;O algorithm for photovoltaic system concerning efficiency,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 5, pp. 2460–2470, Oct. 2022,
  • [24] K. W. Nasser, S. J. Yaqoob, and Z. A. Hassoun, “Improved dynamic performance of photovoltaic panel using fuzzy Logic-MPPT algorithm,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 2, p. 617, Feb. 2021,
  • [25] V. Subramanian, V. Indragandhi, R. Kuppusamy, and Y. Teekaraman, “Modeling and analysis of pv system with fuzzy logic mppt technique for a dc microgrid under variable atmospheric conditions,” Electronics (Switzerland), vol. 10, no. 20, Oct. 2021,
  • [26] SURYOATMOJO, H., Ashari, M., & ARUMSARI, N. Design and Implementation of MPPT Fuzzy Logic Controller for Inverter Connected to Water Pump.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56e4143b-3c46-420f-aaf2-6a46927bd84b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.