Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
3D printing has significantly evolved in recent years. Initially, only plastics were used as materials for 3D printing, but technological advancement has enabled 3D printing with materials such as metals, ceramics and biomaterials. With the development of 3D printing, there emerged a need to create a printer for producing hybrid parts, such as metal-plastic, characterized by both the exceptional strength and durability of metal and the lightweight and insulating properties of plastics. The new technique of 3D printing involves layer-by-layer metal growth in the electroplating process, as well as extrusion of a photopolymer composition, followed by UV light curing on the surface of a copper layer. Prints from this new type of 3D printer must exhibit strong adhesive bonding to prevent damage to the printed model. Therefore, mechanical tests were conducted to examine the adhesion of prepared photopolymer compositions to copper sheet coated with electroplated metal and to regular copper sheet in order to compare the obtained values. Analyzing the test results, it can be concluded that the structure of electrodeposited copper significantly improves the adhesive bond strength.
Rocznik
Tom
Strony
art. no. e80
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Cracow, Poland
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Cracow, Poland
autor
- Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Warszawska 24, 31-155 Cracow, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
- 1. Alphonse M., Bupesh Raja V.K., Gopala Krishna V., Kiran R.S.U., Venkata Subbaiah B., Vinay Rama Chandra L., 2021. Mechaical behavior of sandwich structures with varying core material – A review. Mater. Today: Proc., 44, 3751–3759. DOI: 10.1016/j.matpr.2020.11.722.
- 2. Augustyn P., Rytlewski P., Moraczewski K., Mazurkiewicz A., 2021. A review on the direct electroplating of polymeric materials. J. Mater. Sci., 56, 14881–14899. DOI: 10.1007/s10853-021-06246-w.
- 3. Campilho R.D.S.G., da Silva L.F.M., Banea M.D., 2018. Adhesive bonding of polymer composites to lightweight metals. In: Amancio-Filho S.T., Blaga L.A. (Eds.), Joining of polymermetal hybrid structures. John Wiley & Sons Inc., 29–59. DOI:10.1002/9781119429807.ch2.
- 4. Chen Z., Zhou K., Lu X., Lam Y. C., 2014. A review on the mechanical methods for evaluating coating adhesion. Acta Mech., 225, 431–452. DOI: 10.1007/s00707-013-0979-y.
- 5. Evans R.D., Doll G.L., Morrison Jr. P.W., Bentley J., More K.L., Glass J.T., 2002. The effects of structure, composition, and chemical bonding on the mechanical properties of Si-C:H thin films. Surf. Coat. Technol., 157, 197–206. DOI: 10.1016/S0257-8972(02)00164-0.
- 6. Fug F., Nies C., Possart W., 2014. In situ FTIR study of adhesive interactions of 4,4′-methylene diphenyl diisocyanate and native metals. Int. J. Adhes. Adhes., 52, 66–76. DOI: 10.1016/j.ijadhadh.2014.04.004.
- 7. Fug F., Petry A., Jost H., Ahmed A., Zamanzade M., Possart W., 2017. Molecular layer deposition of polyurethane – polymerisation at the very contact to native aluminium and copper. Appl. Surf. Sci., 426, 133–147. DOI: 10.1016/j.apsusc.2017.07.177.
- 8. Golaz B., Michaud V., Manson J.-A.E., 2013. Photo-polymerized epoxy primer for adhesion improvement at thermoplastics/metallic wires interfaces. Composites, Part A: Appl. Sci. Manuf., 48, 171–180. DOI: 10.1016/j.compositesa.2013.01.017.
- 9. Grujicic M., Sellappan V., Omar M.A., Seyr N., Obieglo A., Erdmann M., Holzleitner J., 2008. An overview of the polymerto-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Process.Technol., 197, 363–373. DOI: 10.1016/j.jmatprotec.2007.06.058.
- 10. Hamdi M., Saleh M.N., Poulis J.A., 2020. Improving the adhesion strength of polymers: effect of surface treatments. J. Adhes. Sci. Technol., 34, 1853–1870. DOI: 10.1080/01694243.2020.1732750.
- 11. Hutchinson J.W., Suo Z., 1991. Mixed mode cracking in layered materials. Adv. Appl. Mech., 29, 63–191. DOI: 10.1016/S0065-2156(08)70164-9.
- 12. Kafkopoulos G., Padberg C.J., Duvigneau J., Vancso G.J., 2021. Adhesion engineering in polymer–metal comolded joints with biomimetic polydopamine. ACS Appl. Mater. Interfaces, 13, 19244–19253. DOI: 10.1021/acsami.1c01070.
- 13. Kaneko T., Nemoto D., Horiguchi A., Miyakawa N., 2005. FTIR analysis of a SiC:H films grown by plasma enhanced CVD. J. Cryst. Growth, 275, e1097–e1101. DOI: 10.1016/j.jcrysgro.2004.11.128.
- 14. Lesage J., Chicot D., 1999. Models for hardness and adhesion of coatings. Surf. Eng., 15, 447–453. DOI: 10.1179/026708499101516821.
- 15. Maassen S.F., Erdle H., Pulvermacher S., Brands D., Böhlke T., Gibmeier J., Schröder J., 2021. Numerical characterization of residual stresses in a four-point-bending experiment of textured duplex stainless steel. Arch. Appl. Mech., 91, 3541–3555. DOI: 10.1007/s00419-021-01931-3.
- 16. Marot G., Lesage J., Démarécaux P., Hadad M., Siegmann S., Staia M.H., 2006. Interfacial indentation and shear tests to determine the adhesion of thermal spray coatings. Surf. Coat. Technol., 201, 2080–2085. DOI: 10.1016/j.surfcoat.2006.04.046.
- 17. Melentiev R., Tao R., Fatta L., Tevtia A.K., Verghese N., Lubineau G., 2023. Towards decoupling chemical and mechanical adhesion at the electroplated metal/polymer interface via precision surface texturing. Surf. Interfaces, 38, 102875. DOI: 10.1016/j.surfin.2023.102875.
- 18. Mucci V., Arenas G., Duchowicz R., Cook W.D., Vallo C., 2009. Influence of thermal expansion on shrinkage during photopoly-merization of dental resins based on bis-GMA/TEGDMA. Dent. Mater., 25, 103–114. DOI: 10.1016/j.dental.2008.04.014.
- 19. Neagu E., Neagu R., 1993. Polymer surface treatment for improvement of metal-polymer adhesion. Appl. Surf. Sci., 64, 231–234. DOI: 10.1016/0169-4332(93)90029-B.
- 20. Nies C., Fug F., Otto C., Possart W., 2014. Adhesion of polyurethanes on native metal surfaces – stability and the role of urea-like species. Int. J. Adhes. Adhes., 52, 19–25. DOI: 10.1016/j.ijadhadh.2014.03.006.
- 21. Ochoa-Putman C., Vaidya U.K., 2011. Mechanisms of interfacial adhesion in metal–polymer composites – effect of chemical treatment. Composites, Part A: Appl. Sci. Manuf., 42, 906–915. DOI: 10.1016/j.compositesa.2011.03.019.
- 22. Patel R.M., Shukla M.J., Patel K.N., Patel H.K., 2009. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding. Mater. Res., 12, 385–393. DOI: 10.1590/S1516-14392009000400003.
- 23. Rahme R., Avril F., Cassagnau P., Sage D., Verchère D., Doux M., 2011. New polymer/steel solution for automotive applications. Int. J. Adhes. Adhes., 31, 725–734. DOI: 10.1016/j.ijadhadh.2011.06.015.
- 24. Ramnath B.V., Alagarraja K., Elanchezhian C., 2019. Review on sandwich composite and their applications. Mater. Today Proc., 16, 859–864. DOI: 10.1016/j.matpr.2019.05.169.
- 25. Schuberth A., Göring M., Lindner T., Töberling G., Puschmann M., Riedel F., Scharf I., Schreiter K., Spange S., Lampke T., 2016. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites. IOP Conf. Ser.: Mater. Sci. Eng., 118, 012041. DOI: 10.1088/1757-899X/118/1/012041.
- 26. Soegijono B., Susetyo F.B., Situmorang E.U.M., Yusmaniar, 2020. Effect of current density on crystallographic orientation, and oxidation behavior of copper plated on aluminum substrate. Asian J. Appl. Sci., 8, 200–207. DOI: 10.24203/ajas.v8i4.6287.
- 27. Suo Z., Hutchinson J.W., 1989. Sandwich test specimens for measuring interface crack toughness. Mater. Sci. Eng. A, 107, 135–143. DOI: 10.1016/0921-5093(89)90382-1.
- 28. Tehfe M.A., Louradour F., Lalevée J., Fouassier J.-P., 2013. Photopolymerization reactions: on the way to a green and sustainable chemistry. Appl. Sci., 3, 490–514. DOI: 10.3390/app3020490.
- 29. Tomal W., Gałuszka K., Lepcio P., Pilch M., Chachaj-Brekiesz A., Korčušková M., Ortyl J., 2024. Naphthalene–stilbenes as effective visible-light sensitizers to study the effect of diluent and nanofillers on in situ photopolymerization and 3D-VAT printing process. Mater. Adv., 5, 788–805. DOI: 10.1039/D3MA00943B.
- 30. Trzepieciński T., Najm S.M., Sbayti M., Belhadjsalah H., Szpunar M., Lemu H.G., 2021. New advances and future possibilities in forming technology of hybrid metal–polymer composites used in aerospace applications. J. Compos. Sci., 5, 217. DOI: 10.3390/jcs5080217.
- 31. Zhao Q., Wang C., Liu Y., Wang S., 2007. Bacterial adhesion on the metal-polymer composite coatings. Int. J. Adhes. Adhes., 27, 85–91. DOI: 10.1016/j.ijadhadh.2006.01.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56e1ed0f-7006-4fb6-b5cd-c900fed3a3c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.