Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Atmospheric methane emissions from the energy sector, particularly coal mines, are a component of total global methane emissions. Its presence causes climate changes that contribute to global warming. Methane is a potent greenhouse gas (GHG) with a global warming potential (GWP) approximately 30 times greater than that of carbon dioxide over a 100-year period. The estimation of methane emissions from both underground hard coal mines and open-pit lignite mines is performed based on guidelines that follow the methods recommended in the core publications of the International Panel on Climate Change (IPCC). The methane emission rate determination method developed by scientific institutions is allowed. This article focuses on the analysis and formulation of guidelines for determining the potential methane emissions from open-pit lignite mines, which are determined based on the emission factor and coal production. Coalbed methane content was tested using two methods to determine the methane emission factor. Results of sorption tests were also presented. The results obtained can be used for the development of new solutions or the improvement of current solutions for the determination of the methane emission rate in open-pit lignite mines.
Wydawca
Czasopismo
Rocznik
Tom
Strony
595--614
Opis fizyczny
Bibliogr. 54 poz., fot., rys., tab.
Twórcy
autor
- Central Mining Institute – National Research Institute, Pl. Gwarków 1, 40-160 Katowice
autor
- Central Mining Institute – National Research Institute, Pl. Gwarków 1, 40-160 Katowice
autor
- Central Mining Institute – National Research Institute, Pl. Gwarków 1, 40-160 Katowice
Bibliografia
- [1] M. Borowski, P. Życzkowski, J. Cheng, R. Łuczak, K. Zwolińska, The Combustion of Methane from Hard Coal Seams in Gas Engines as a Technology Leading to Reducing Greenhouse Gas Emissions – Electricity Prediction Using ANN. Energies 13 (17), 4429 (2020). DOI: https://doi.org/10.3390/en13174429.
- [2] I PCC (2016). Global Warming Potential Values. Intergovern mental Panel on Climate Change: http://ghgprotocol.org/sites/default/files/ghgp/GlobalWarming-Potential-Values%20(Feb%2016%202016).pdf, accessed: 02.09.2023.
- [3] U .S. EPA (2017). Understanding Global Warming Potentials. U.S. Environmental Protection Agency, Washington, DC: https://www.epa.gov/ ghgemissions/understanding-global-warming-potentials, accessed: 14.08.2023.
- [4] J.E. Mariño-Martínez, R.D. Chanci-Bedoya, A.J. González-Preciado, Methane emissions from coal open pits in Colombia. Dyna 87 (214), 139-145 (2020). DOI: https://doi.org/10.15446/dyna.v87n214.84298.
- [5] J. Swolkień, A. Fix, M. Gałkowski, Factors influencing the temporal variability of atmospheric methane emissions from Upper Silesia coal mines: a case study from the CoMet mission. Atmos. Chem. Phys. 22, 16031-16052 (2022).DOI: https://doi.org/10.5194/acp-22-16031-2022.
- [6] K.A. Mar, C. Unger, L. Walderdorff, T. Butler, Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environ. Sci. Policy 134, 127-136 (2022). DOI: https://doi.org/10.1016/j.envsci.2022.03.027.
- [7] C .Ö. Karacan, F.A. Ruiz, M. Cotè, S. Phipps, Coal mine methane: a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 86, 121–156 (2011).DOI : https://doi.org/10.1016/j.coal.2011.02.009.
- [8] J. Cheng, D. Ran, Q. Fu, W. Lu, S. Sheng, Z. Ma, R. Fediuk, J. Liu, Solid-liquid particle flow sealing mucus (PFSM) in enhancing coalbed methane (CBM) recovery: Multiple-perspectives analysis and mechanism in sights. Constr. Build. Mater. 435, 136670 (2024). DOI: https://doi.org/10.1016/j.conbuildmat.2024.136670.
- [9] N . Kholod, M. Evans, R.C. Pilcher, V. Roshchanka, F. Ruiz, M. Coté, R. Collings, Global methane emissions from coal mining to continue growing even with declining coal production. J. Clean. Prod. 256, 120489 (2020).DOI: https://doi.org/10.1016/j.jclepro.2020. 120489.
- [10] M. Saunois et al., The global methane budget 2000-2017. Earth Syst. Sci. Data 12, 1561-1623 (2020).DOI : https://doi. org/10.5194/essd-12-1561-2020.
- [11] A. Pytlak, A. Szafranek-Nakonieczna, W. Goraj, I. Śnieżyńska, A. Krążała, A. Banach, I. Ristović, M. Słowakiewicz, Z. Stępniewska, A survey of greenhouse gases production in central European lignites. Sci. Total Environ. 800,149551 (2021). DOI: https://doi.org/10.1016/j.scitotenv.2021.149551.
- [12] An EU strategy to reduce methane emissions: European Parliament resolution of 21 October 2021 on an EU strategy to reduce methane emissions (2021/2006(INI)), 21.10.2021, https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:52021IP0436, accessed: 14.09.2023.
- [13] I EA (2023). Global Methane Tracker 2023, https://www.iea.org/reports/global-methane-tracker-2023, accessed:20.09.2023.
- [14] M. Karbownik, J. Krawczyk, T. Schlieter, The Unipore and Bidisperse Diffusion Models for Methane in Hard Coal Solid Structures Related to the Conditions in the Upper Silesian Coal Basin. Arch. Min. Sci. 65, 591-603 (2020).DOI: https://doi.org/10.24425/ams.2020.134136.
- [15] D . Chen, A. Chen, X. Hu, B. Li, X. Li, L. Guo, R. Feng, Y. Yang, X. Fang, Substantial methane emissions from abandoned coal mines in China. Environ. Res. 214 (2), 113944 (2022). DOI: https://doi.org/10.1016/j.envres.2022.113944.
- [16] J. Gao, Ch. Guan, B. Zhang, K. Li, Decreasing methane emissions from China’s coal mining with rebounded coal production. Environ. Res. Lett. 16, 124037 (2021). DOI: https://doi.org/10.1088/1748-9326/ac38d8.
- [17] Z.R. Barkley, T. Lauvaux, K.J. Davis, A. Fried, P. Weibring, D. Richter, J.G. Walega, J. DiGangi, S.H. Ehrman, X. Ren, R.R. Dickerson, Estimating methane emissions from underground coal and natural gas production in south western Pennsylvania. Geophys. Res. Lett. 46, 4531-4540 (2019). DOI: https://doi.org/10.1029/2019GL082131.
- [18] M. Dreger, S. Kędzior, Methane emissions against the background of natural and mining conditions in the Budrykand Pniówek mines in the Upper Silesian Coal Basin (Poland). Environ. Earth. Sci. 80, 746 (2021).DOI : https://doi.org/10.1007/s12665-021-10063-4.
- [19] U .S. EPA (2019). Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 2015e2050, Report EPA-430-R-19-010. U.S. Environmental Protection Agency. Washington, DC: https://www.epa.gov/global-mitigationnon-co2- greenhouse-gases/global-non-co2-greenhouse-gas-emission-projections, accessed: 10.08.2023.
- [20] S. Schwietzke, O.A. Sherwood, L.M.P. Bruhwiler, J.B. Miller, G. Etiope, E.J. Dlugokencky, S.E. Michel, V.A. Arling, B.H. Vaughn, J.W.C. White, P.P. Tans, Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538, 88 (2016). DOI: https://doi.org/10.1038/nature19797.
- [21] S.M. Miller, S.C. Wofsy, A.M. Michalak, E.A. Kort, A.E. Andrews, S.C. Biraud, E.J. Dlugokencky, J. Eluszkiewicz, M.L. Fischer, G. Janssens-Maenhout, Anthropogenic emissions of methane in the United States. Proc. Natl. Acad.Sci. Unit. States Am. 110 (50), 20018-20022 (2013). DOI: https://doi.org/10.1073/pnas.1314392110.
- [22] R .M. Flores, Coal and coalbed gas, Elsevier (2014). DOI: https://doi.org/10.1016/B978-0-12-396972-9.00004-5.
- [23] D . Mayumi, H. Mochimaru, H. Tamaki, K. Yamamoto, H. Yoshioka, Y. Suzuki, Methane production from coal by a single methanogen. Science 354 (6309), 222-225 (2016). DOI: https://doi.org/10.1126/science.aaf8821.
- [24] J. Macuda, P. Baran, M. Wagner, Evaluation of the Presence of Methane in Złoczew Lignite: Comparison with Other Lignite Deposits in Poland. Nat. Resour. Res. 29 (6), 3841-3856 (2020).DOI : https://doi.org/10.1007/s11053-020-09691-7.
- [25] I nternational Energy Agency (IEA) (2023), Driving Down Coal Mine Methane Emissions, IEA, Paris: https://www.iea.org/reports/driving-down-coal-mine-methane-emissions, accessed: 18.08.2023.
- [26] A. Starzycka, J. Kasiński, A. Saternus, P. Urbański, Mineral Resources of Poland as seen by Polish Geological Survey: Lignite. Polish Geological Institute – National Research Institute (2020).
- [27] PGE GiEK (2023). https://kwbturow.pgegiek.pl/Technika-i-technologia/Technologia-gornicza/Geologia, accesed:07.12.2023.
- [28] J. Bieniewski, Węgiel brunatny w polskiej części niecki żytawskiej. Geologia Sudetica, 2 (1), 401-426 (1966).
- [29] P . Baran, S. Hołda, J. Macuda, A. Nodzeński, L. Zawisza, Investigations of methane content in lignite coals, Gospodarka Surowcami Mineralnymi 23 (3), 21-28 (2007).
- [30] K . Galos, A. Kot-Niewiadomska, Możliwości i perspektywy stosowania surowców ilastych z kopalń węgla brunatnego. Górnictwo Odkrywkowe 53 (1-2), 15-19 (2012).
- [31] Z. Gergowicz, Geotechnika górnicza. Wydawnictwo PWr, Wrocław (1974).
- [32] Intergovernmental Panel on Climate Change (2019) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories, accessed: 18.08.2023.
- [33] D .A. Kirchgessner, S.D. Piccot, S.S. Masemore, An Improved Inventory of Methane Emissions from Coal Miningin the United States. J. Air Waste Manage. Assoc. 50 (11), 1904-1919 (2000).DOI : https://doi.org/10.1080/10473289.2000.10464227.
- [34] O . Esen, S.C. Özer, A. Soylu, A.R. Rend, A. Fisne, An Investigation of The Coal Seam Gas Content and Composition in Soma Coal Basin, Turkey. Coal Operators Conference. Wollongong NSW Australia (2018).
- [35] K . Wang, X. Fu, Y. Qin, K.S. Santigie, Adsorption Characteristic of Lignite in China. J. Earth. Sci. 22 (3), 371-376(2011). DOI: https://doi.org/10.1007/s12583-011-0189-2.
- [36] R .M. Bustin, C.R. Clarkson, Geological Controls on coalbed methane reservoir capacity and gas content. Int.J. Coal Geol. 38, 3-26 (1998). DOI: https://doi.org/10.1016/S0166-5162(98)00030-5.
- [37] C .R. Clarkson, R.M. Bustin, Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. Int. J. Coal Geol. 42, 241-271 (2000).DOI : https://doi.org/10.1016/S0166-5162(99)00032-4.
- [38] P .J. Crosdale, B.B. Beamish, M. Valix, Coalbed methane sorption related to coal composition. Int. J. Coal Geol.35, 147-158 (1998). DOI: https://doi.org/10.1016/S0166-5162(97)00015-3.
- [39] Polish Committee for Standardization: PN-G-44200:2013-10 Mining. Determination of methane content in hardcoal seams. Drill cuttings method. Poland (2013).
- [40] Polish Ordinance of the Minister of Energy dated November 23, 2016 on detailed requirements for the operation of underground mining plants (Journal of Laws 2017, item 1118): https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001118, accessed: 16.07.2023.
- [41] J. Borowski, Badanie gazonośności pokładów z zastosowaniem nowych metod. Prace GIG, komunikat nr 645, Poland, Katowice (1975).
- [42] M. Karbownik, Analysis of the application of methane-bearing capacity test methods in the conditions of Polish mining. J. Sustain. Min. 21 (4), 309-318 (2022). DOI: https://doi.org/10.46873/2300-3960.1365.
- [43] M. Karbownik, A. Dudzińska, J. Strzymczok, Multi-Parameter Analysis of Gas Losses Occurring during the Determination of Methane-Bearing Capacity in Hard Coal Beds. Energies 15, 3239 (2022).DOI : https://doi.org/10.3390/en15093239.
- [44] C. Bertard, B. Bruyet, J. Gunther, Determination of desorbable gas concentration of coal (direct method). Int. J. RockMech. Min. Sci. Geomech. 7, 43-65 (1970). DOI: https://doi.org/10.1016/0148-9062(70)90027-6.
- [45] F.N. Kissell, C.M. Mcculloch, C.H. Elder, The Direct Method of Determining Methane Content of Coal Beds for Ventilation Design; U.S. Bureau of Mines Report of Investigations RI7767; US Department of Interior, Bureau of Mines: Washington, DC, USA (1973).
- [46] M. Tutak, J. Brodny, Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process. Energies 12, 3840 (2019). DOI: https://doi.org/10.3390/en12203840.
- [47] W. Diamond, S. Schatzel, F. Garcia, J. Ulery, The modified direct method: A solution for obtaining accurate coal desorption measurements. In Proceedings of the International Coal bed Methane Symposium 128, Tuscaloosa, AL, USA, 331-342 (2001).
- [48] M.J. Mavor, T.J. Pratt, R.N. Britton, Improved methodology for determining total gas content. In Canister Gas Desorption Data Summary; Topical Report GRI-93/0410; Gas Research Institute: Chicago, IL, USA (1994).
- [49] N . Szlązak, D. Obracaj, M. Korzec, Estimation of Gas Loss in Methodology for Determining Methane Content of Coal Seams. Energies 14, 982 (2021). DOI: https://doi.org/10.3390/en14040982.
- [50] ASTM International Standard. ASTM D7569/D7569M–10 (Reapproved 2015) Determination of Gas Content of Coal – Direct Desorption Method; ASTM International: West Conshohocken, PA, USA (2015).
- [51] M. Karbownik, J. Krawczyk, K. Godyń, T. Schlieter, J. Ščučka, Analysis of the Influence of Coal Petrography on the Proper Application of the Unipore and Bidisperse Models of Methane Diffusion. Energies 14, 8495 (2021).DOI: https://doi.org/10.3390/en14248495.
- [52] K . Wierzbiński, The course of methane adsorption kinetics as indicator of seam structural changes in the fault zone area. Mining Review 67 (6), 70-75 (2011).
- [53] P . Baran, J. Cygankiewicz, K. Zarębska, Carbon dioxide sorption on polish ortholignite coal in low and elevated pressure. J. CO2 Util. 3 (4), 44–48 (2013). DOI: https://doi.org/10.1016/j.jcou.2013.09.003.
- [54] Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on methane emissions reduction in the energy sector and amending Regulation (EU) 2019/942, Brussels (2021). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2021%3A805%3AFIN, accessed: 02.10.2023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56e15793-3c93-4699-b548-737e30afcd43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.