Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We show that every operator with memory acting between Banach spaces CΦBV(I) of continuous functions of bounded variation in the sense of Schramm defined on a compact interval I of a real axis, is a Nemytskij composition operator with the continuous generating function. Moreover, some consequences for uniformly bounded operators with memory will be given. As a by-product, we obtain that a Banach space CΦBV(I) has the uniform Matkowski property.
Rocznik
Tom
Strony
69--80
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Department of Mathematics, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
- [1] Lichawski, K., Matkowski, J., & Mis, J. (1989). Locally defined operators in the space of differentiable functions. Bull. Polish Acad. Sci. Math., 37, 315-325.
- [2] Wróbel, M. (2010). Locally defined operators and a partial solution of a conjecture. Nonlinear Anal. TMA, 72, 495-506.
- [3] Wróbel, M. (2013). Locally defined operators in the space of functions of bounded ´ ϕ-variation. Real Anal. Exch., 38(1), 79-92.
- [4] Wrobel, M. (2021). The form of locally defined operators in Waterman spaces. Math. Slovaca, 71(6), 1529-1544.
- [5] Schramm, M., & Waterman, D. (1982). Absolute convergence of Fourier series of functions of ΛBVp and ΦΛBV. Acta Math. Acad. Sci. Hung., 40(3-4), 273-276.
- [6] Brunner, H. (2017). Volterra Integral Equations. Cambridge University Press.
- [7] Kmit, I. (2021).C 1 -smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions. Commentat. Math. Univ. Carol., 52(4), 507-517.
- [8] Grutzner, S., & Muntean, A. (2021). Identifying processes governing damage evolution in quasistatic elasticity, Part 1 - Analysis. Advances in Mathematical Sciences and Applications, 30(2), 305-334.
- [9] Krämer, R, & Mathé, P. (2008). Modulus of continuity of Nemytskii operators with application to the problem of option pricing. Journal of Inverse and III-posed Problems, 16(5), 435-461.
- [10] Appell, J., Banas, J., & Merentes, N. (2014). Bounded Variation and Around. Berlin, Boston: De Gruyter.
- [11] Guerrero, J.A, Leiva, H., Matkowski, J., & Merentes, N. (2010). Uniformly continuous composition operators in the space of bounded ϕ-variation functions. Nonlinear Anal., 72, 3119-3123.
- [12] Wróbel, M. (2023). Schramm spaces and composition operators. J. Appl. Math. Comput. Mech., 22(2), 87-98.
- [13] Matkowski, J. (2011). Uniformly bounded composition operators between general Lipschitz function normed spaces. Topol. Methods Nonlinear Anal., 38(2), 395-405
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56d49f55-fa59-40e4-81f2-dfa811264d35