PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Growth rates of common pelagic ciliates in a highly eutrophic lake measured with a modified dilution method

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
PL
The growth rates of ciliates estimated under natural conditions with the widely used size fractionation method are much lower than those observed in cultures. However, recent studies performed with a modified dilution method demonstrated that the size fractionation method underestimates the ciliate growth, because it does not remove predators of the same size as the organisms studied. Thus, it is still unresolved whether ciliates are food-limited in different systems and whether their growth rates are indeed lower than those in cultures. This study was conducted in highly eutrophic Lake Gardno using a modified dilution method. Each time, two dilution experiments were performed (around noon and around midnight). Four small, common ciliates from the genera Rimostrombidium, Tintinnidium, Cyclidium, and Urotricha were studied. The first three ciliates demonstrated very high mean diel growth rates exceeding 0.1 h-1, which corresponded well to the highest values reported in the literature for the ciliate growth in cultures at similar temperatures. Tintinnidium sp. demonstrated a diel growth rhythm. Urotricha sp. was sensitive to the experimental procedure, and measurements of its growth were unsuccessful. Concentrations of food particles were analyzed to check whether organisms studied were food satiated.
Rocznik
Strony
216--229
Opis fizyczny
Bibliogr. 87 poz., tab., wykr.
Twórcy
autor
  • Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
Bibliografia
  • [1]. Agatha, S., Laval-Peuto, M. & Simon, P. (2013). The tintinnid lorica. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 17-41). Chichester: Wiley-Blackwell.
  • [2]. Bautista-Reyes, F. & Macek, M. (2012). Ciliate food vacuole content and bacterial community composition in the warm-monomictic crater Lake Alchichica, México. FEMS Microbiol. Ecol. 79: 85-97. DOI: 10.1111/j.1574- 6941.2011.01200.x.
  • [3]. Berglund, J., Samuelsson, K., Kull, T., Müren, U. & Andersson, A. (2005). Relative strength of resource and predation limitation of heterotrophic nanoflagellates in a low- productive sea area. J. Plankton Res. 27: 923-935. DOI: 10.1093/plankt/ft>i067.
  • [4]. Biernacka, I. (1952). Studies on the reproduction of some species of the genus Tintinnopsis Stein. Ann. Univ. Mariae Curie-Sklodowska Sect. C 6: 211-247. (In Polish with English abstract).
  • [5]. Boenigk, J. & Novarino, G. (2004). Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol. 34: 181-192.
  • [6]. Børsheim, K.Y. & Bratbak, G. (1987). Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171-175.
  • [7]. Buitenhuis, E.T., Rivkin, R.B., Sailley, S. & Le Quéré, C. (2010). Biogeochemical fluxes through microzooplankton. Global Biogeochem. Cy. 24: GB4015. DOI: 10.1029/2009GB003601.
  • [8]. Calbet, A. & Saiz, E. (2013). Effects of trophic cascades in dilution grazing experiments: from artificial saturated feeding responses to positive slopes. J. Plankton Res. 35: 1183-1191. DOI: 10.1093/plankt/ft>t067.
  • [9]. Campbell, A.S. (1926). The cytology of Tintinnopsis nucula (Fol) Laackmann with an account of its neuromotor apparatus, division, and a new intranuclear parasite. Univ. Calif. Publs. Zool. 29: 179-236.
  • [10]. Caron, D.A. (1983). Technique for enumeration of heterotrophic and phototrophic anoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46: 491-498.
  • [11]. Caron, D.A. & Hutchins, D.A. (2013). The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plankton Res. 35: 235-252. DOI: 10.1093/plankt/ft>s091.
  • [12]. Carrias, J.-F., Thouvenot, A., Amblard, C. & Sime-Ngando, T. (2001). Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, France. Aquat. Microb. Ecol. 24: 163-174.
  • [13]. Carrick, H. (2005). An under-appreciated component of biodiversity in plankton communities: the role of protozoa in Lake Michigan (a case study). Hydrobiologia 551: 17-32. DOI: 10.1007/s10750-005-4447-0.
  • [14]. Carrick, H.J., Fahnenstiel, G.L. & Taylor, W.D. (1992). Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamics. Limnol. Oceanogr. 37: 1221-1235.
  • [15]. Choi, J.W. & Stoecker, D.K. (1989). Effects of fixation on cell volume of marine planktonic protozoa. Appl. Environ. Microbiol. 55: 1761-1765.
  • [16]. Cleven, E.-J. (2004). Pelagic ciliates in a large mesotrophic lake: seasonal succession and taxon-specific bacterivory in Lake Constance. Internat. Rev. Hydrobiol. 89: 289-304. DOI: 10.1002/iroh.200310701.
  • [17]. Cleven, E.-J. & Königs, S. (2007). Growth of interstitial ciliates in association with ciliate bacterivory in a sandy hyporheic zone. Aquat. Microb. Ecol. 47: 177-189.
  • [18]. Cleven, E.-J. & Weisse, T. (2001). Seasonal succession and taxon-specific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance. Aquat. Microb. Ecol. 23: 147-161.
  • [19]. Coats, D.W. & Bachvaroff, T.R. (2013). Parasites of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 145-170). Chichester: Wiley-Blackwell.
  • [20]. Coats, D.W., Kim, Y.O., Choi, J.M. & Lee, E.S. (2014). Observations on dinoflagellate parasites of aloricate ciliates in Korean coastal waters. Aquat. Microb. Ecol. 72: 89-97. DOI: 10.3354/ame01687.
  • [21]. Dolan, J.R. (2010). Morphology and ecology in tintinnid ciliates of the marine plankton: correlates of lorica dimensions. Acta Protozool. 49: 235-244.
  • [22]. Dolan, J.R. & Coats, D.W. (1991). A study of feeding in predacious ciliates using prey ciliates labeled with fluorescent microspheres. J. Plankton Res. 13: 609-627.
  • [23]. Dupuy, C., Ryckaert, M., Le Gall, S. & Hartmann, H.J. (2007). Seasonal variations in planktonic community structure and production in an Atlantic coastal pond: the importance of nanoflagellates. Microb. Ecol. 53: 537-548. DOI: 10.1007/ s00248-006-9087-z.
  • [24]. Fenchel, T. (1980). Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13-25.
  • [25]. Fenchel, T. (1986). Protozoan filter feeding. Progr. Protistol. 1: 65-113.
  • [26]. Ficek, D. & Wielgat-Rychert, M. (2009). Spatial distribution and seasonal variation in chlorophyll concentration s in the coastal Lake Gardno (Poland). Oceanol. Hydrobiol. Stud. 38: 3-15. DOI: 10.2478/v10009-009-0002-z.
  • [27]. Finlay, B.J. (1977). The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia (Berl.) 30: 75-81.
  • [28]. First, M.R., Miller, H.L., Lavrentyev, P.J., Pinckney, J.L. & Burd, A.B. (2009). Effects of microzooplankton growth and trophic interactions on herbivory in coastal and offshore environments. Aquat. Microb. Ecol. 54: 255-267. DOI: 10.3354/ame01271.
  • [29]. Foissner, W. & Berger, H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicatiors in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biol. 35: 375-482.
  • [30]. Franzè, G. & Lavrentyev, P.J. (2014). Microzooplankton growth rates examined across a temperature gradient in the Barents Sea. PLoS ONE 9: e86429. DOI: 10.1371/journal. pone.0086429.
  • [31]. Franzé, G. & Modigh, M. (2013). Experimental evidence for internal predation in microzooplankton communities. Mar. Biol. 160: 3103-3112. DOI: 10.1007/s00227-013-2298-1.
  • [32]. Frost, B.W. (1972). Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanuspacificus. Limnol. Oceanogr. 17: 805-815.
  • [33]. Gallegos, C.L. (1989). Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Mar. Ecol. Prog. Ser. 57: 23-33.
  • [34]. Gast, V. (1985). Bacteria as a food source for microzooplankton in the Schlei Fjord and Baltic Sea with special reference to ciliates. Mar. Ecol. Prog. Ser. 22: 107-120.
  • [35]. Gismervik, I. (2005). Numerical and functional responses of choreo- and oligotrich planktonic ciliates. Aquat. Microb. Ecol. 40: 163-173.
  • [36]. Heinbokel, J.F. (1978). Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177-189.
  • [37]. Heinbokel, J.F. & Coats, D.W. (1986). Patterns of tintinnine abundance and reproduction near the edge of seasonal pack-ice in the Weddell Sea, November 1983. Mar. Ecol. Prog. Ser. 33: 71-80.
  • [38]. Hobbie, J.E., Daley, R.J. & Jasper, S. (1977). Use of nucleopore filters for counting bacteria by epifluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228.
  • [39]. Jakobsen, H.H. & Strom, S.L. (2004). Circadian cycles in growth and feeding rates of heterotrophic protist plankton. Limnol. Oceanogr. 49: 1915-1922.
  • [40]. Jeffrey, S.W. & Humphrey, G.F. (1975). New spectrophotometric equation for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191-194.
  • [41]. Jezbera, J., Horńak, K. & Simek, K. (2005). Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridisation. FEMS Microbiol. Ecol. 52: 351-363. DOI: 10.1016/j.femsec.2004.12.001.
  • [42]. Klaas, C., Verity, P.G. & Schultes, S. (2008). Determination of copepod grazing on natural plankton communities: correcting for trophic cascade effects. Mar. Ecol. Prog. Ser. 357: 195-206. DOI: 10.3354/meps07262.
  • [43]. Lai, C.-C., Fu, Y.-W., Liu, H.-B., Kuo, H.-Y., Wang, K.-W. et al. (2014). Distinct bacterial-production-DOC-primary- production relationships and implications for biogenic C cycling in the South China Sea shelf. Biogeosciences 11: 147¬156. DOI: 10.5194/bg-11-147-2014.
  • [44]. Landry, M.R. & Hassett, R.P. (1982). Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283¬288.
  • [45]. Landry, M.R., Haas, L.W. & Fagerness, V.L. (1984). Dynamics of microbial plankton communities: Experiments in Kanoehe, Hawaii. Mar. Ecol. Prog. Ser. 16: 127-133.
  • [46]. Lavrentyev, P.J., McCarthy, M.J., Klarer, D.M., Jochem, F. & Gardner, W.S. (2004). Estuarine microbial food web patterns in a Lake Erie coastal wetland. Aquat. Ecol. 48: 567-577. DOI: 10.1007/s00248-004-0250-0.
  • [47]. Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114: 67-83.
  • [48]. Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1994). Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. Mar. Biol. Assoc. UK 74: 849-861.
  • [49]. Macek, M., Simek, K., Pernthaler, J., Vyhnalek, V. & Psenner, R. (1996). Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degree. J. Plankton Res. 18: 463-481.
  • [50]. McManus, G.B. (1993). Growth rates of natural populations of heterotrophic nanoplankton. In P.F. Kemp, B.F. Sherr, E.B. Sherr, J.J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 557-562). Boca Raton: Levis Publishing.
  • [51]. McManus, G.B. & Santoferrara, L.F. (2013). Tintinnids in microzooplankton communities. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 198-213). Chichester: Wiley- Blackwell.
  • [52]. Mironova, E., Telesh, I. & Skarlato, S. (2012). Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res. 34: 208-220. DOI: 10.1093/plankt/ft>r095.
  • [53]. Mitra, A., Flynn, K.J., Burkholder, J.M., Berge, T., Calbet, A. et al. (2014). The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11: 995-1005. DOI: 10.5194/ bg-11-995-2014.
  • [54]. Montagnes, D.J.S. (1996). Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241-254.
  • [55]. Montagnes, D.J.S. (2013). Ecophysiology and behavior of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 85-121). Chichester: Wiley-Blackwell.
  • [56]. Montagnes, D.J.S., Barbosa, A.B., Boenigk, J., Davidson, K., Jürgens, K. et al. (2008). Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat. Microb. Ecol. 53: 83-98. DOI: 10.3354/ame01229.
  • [57]. Montagnes, D.J.S., Lynn, D.H., Roff, J.C. & Taylor, W.D. (1988). The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99: 21-30.
  • [58]. Montagnes, D.J.S., Berges, J.A., Harrison, P.J. & Taylor, F.J.R. (1994). Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39: 1044-1060.
  • [59]. Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18: 261-273.
  • [60]. Müller, H. & Geller, W. (1993). Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol. 126: 315-327.
  • [61]. Nielsen, T.G. & Kiørboe, T. (1994). Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508-519.
  • [62]. Ohman, M.D. & Snyder, R.A. (1991). Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr. 36: 922-935.
  • [63]. Paffenhöfer, G.A., Sherr, B.F. & Sherr, E.B. (2007). From small scales to the big picture: persistence mechanisms of planktonic grazers in the oligotrophic ocean. Mar. Ecol. 28: 243-253. DOI: 10.1111/j.1439-0485.2007.00162.x.
  • [64]. Pestova, D., Macek, M. & Martinez-Pérez, M.E. (2008) Ciliates and their picophytoplankton-feeding activity in a high-altitude warm-monomictic saline lake. Eur. J. Protistol. 44: 13-25. DOI: 10.1016/j.ejop.2007.04.004.
  • [65]. Posch, T., Jezbera, J., Vrba, J., Simek, K., Pernthaler, J. et al. (2001). Size selective feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and its effects on bacterial community structure: a study from a continuous cultivation system. Microb. Ecol. 42: 217-227. DOI: 10.1007/s002480000114.
  • [66]. Pratt, J.R. & Cairns, J.Jr. (1985). Functional groups in the protozoa: roles in differing ecosystems. J. Protozool. 32: 415-423.
  • [67]. Rivier, A., Brownlee, D.C., Sheldon, R.W. & Rassoulzadegan, F. (1985). Growth of microzooplankton: a comparative study of bactivorous zooflagellates and ciliates. Mar. Microb. Food Webs 1: 51-60.
  • [68]. Rychert, K. (2011). Dependence between volumes of protoplast and lorica in Lugol-fixed tintinnid ciliates. Protist 162: 249-252. DOI: 10.1016/j.protis.2010.05.004.
  • [69]. Rychert, K. (2013). A modified dilution method reveals higher protozoan growth rates than the size fractionation method. Eur. J. Protistol. 49: 249-254. DOI: 10.1016/j. ejop.2012.08.003.
  • [70]. Rychert, K., Wielgat-Rychert, M., Szczurowska, D., Myszka, M., Bochyńska, M. et al. (2012). The importance of ciliates as a trophic link in shallow, brackish and eutrophic lakes. Pol. J. Ecol. 60: 767-776.
  • [71]. Seuthe, L., Iversen, K.R. & Narcy, F. (2011). Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol. 34: 751-766. DOI: 10.1007/ s00300-010-0930-9.
  • [72]. Simek, K., Bobkova, J., Macek, M., Nedoma, J. & Psenner, R. (1995). Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40: 1077-1090.
  • [73]. Sonntag, B., Posch, T., Klammer, S., Teubner, K. & Psenner, R. (2006). Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat. Microb. Ecol. 43: 193-207.
  • [74]. Stocker, R. (2012). Marine microbes see a sea of gradients. Science 338: 628-633. DOI: 10.1126/science.1208929.
  • [75]. Taylor, W.D. (1978). Maximum growth rate, size and commonness in a community of bactivorous ciliates. Oecologia (Berl.) 36: 263-272.
  • [76]. Trojanowski, J. & Antonowicz, J. (2011). Heavy metals in surface microlayer in water of Lake Gardno. Arch. Environ. Prot. 37: 75-88.
  • [77]. Turley, C.M., Newell, R.C. & Robins, D.B. (1986). Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser. 33: 59-70.
  • [78]. Utermöhl, H. (1958). Improving quantitative methods for phytoplankton analyses. Mitt. Int. Ver. Limnol. 9: 1-38. (In German).
  • [79]. Verity, P.G. (1986). Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 117-126.
  • [80]. Verity, P.G. & Langdon, C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859-867.
  • [81]. Wallberg, P., Jonsson P.R. & Johnstone, R. (1999). Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystem. Aquat. Microb. Ecol. 18: 175-185.
  • [82]. Weisse, T., Karstens, N., Meyer, V.C.L., Janke, L., Lettner, S. et al. (2001). Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat. Microb. Ecol. 26: 167-179.
  • [83]. Weisse, T., Stadler, P., Lindström, E.S., Kimmance, S.A. & Montagnes, D.J.S. (2002). Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta. Limnol. Oceanogr. 47: 1447-1455.
  • [84]. Wiackowski, K., Doniec, A. & Fyda, J. (1994). An empirical study of the effect of fixation on ciliate cell volume. Mar. Microb. Food Webs 8: 59-69.
  • [85]. Wiackowski, K., Ventelä, A.-M., Moilanen, M., Saarikari, V., Vuorio, K. et al. (2001). What factors control planktonic ciliates during summer in a highly eutrophic lake? Hydrobiologia 443: 43-57. DOI: 10.1023/A:1017592019513.
  • [86]. Wielgat-Rychert, M., Rychert, K. & Ficek, D. (2010). Factors controlling pelagic production and respiration in a shallow polymictic lake. Pol. J. Ecol. 58: 379-385.
  • [87]. Wielgat-Rychert, M., Jarosiewicz, A., Ficek, D., Pawlik, M. & Rychert, K. (2015). Nutrient fluxes and their impact on the phytoplankton in a shallow coastal lake. Pol. J. Environ. Stud. 24: 751-759. DOI: 1015244/pjoes/30925.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56cf5b61-5221-4f1b-aee4-42e3f15c00aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.