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1. INTRODUCTION

The collection of all continuous mappings between topological spaces X and Y will
be denoted by C(X,Y ). A mapping f : X → Y belongs to the first Baire class,
f ∈ B1(X,Y ), if there exists a sequence (fn)∞n=1 of mappings from C(X,Y ) which is
convergent to f pointwise on X.

The Sorgenfrey line S is the set of all reals equipped with the topology S generated
by the basis of all half-open intervals [a, b). Since the topology S is finer than the
standard topology E on the real line, each continuous function f : R→ Y with values
in arbitrary space Y is continuous in the topology S too. It is easy to see that the
converse proposition is not true: the characteristic function χ[0,1) of the half-open
interval [0, 1) is continuous in S but is discontinuous at the points x = 0 and x = 1 in
the topology E ; at the same time is is easy to see that χ[0,1) belongs to the first Baire
class on R. Bade [1] proved that each real-valued continuous function on S2 belongs
to the first Baire class in the topology E . Moreover, Bade noticed that Mrówka [7]
obtained the inclusion C(Sn,R) ⊆ B1(Rn,R) for every cardinal n. Since all functions
in the above-mentioned results take values in the real line, it is natural to consider
other range spaces which lead to the following questions.
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Question 1.1. Let T be a set and f : ST → Y be a continuous mapping. Does the
inclusion f ∈ B1(RT , Y ) hold if

a) Y is a topological vector space,
b) Y is a locally convex space,
c) Y is a metrizable topological vector space?

In this paper we show that the answer to Question 1.1c) is positive for any T ; the
answer to b) is positive for |T | ≤ ℵ0; and the answer to Question 1.1a) is positive in
the case |T | < ℵ0.

2. CLASSIFICATION OF MAPPINGS ON QUARTER-STRATIFIABLE SPACES

Definition 2.1. A topological space X is said to be equiconnected if there exists
a continuous function λ : X ×X × [0, 1]→ X such that

(i) λ(x, y, 0) = x;
(ii) λ(x, y, 1) = y;
(iii) λ(x, x, t) = x

for all x, y ∈ X and t ∈ [0, 1].

The class of all equiconnected spaces contains the class of all topological vector
spaces: the equality λ(x, y, t) = (1 − t)x + ty for x, y ∈ X and t ∈ [0, 1] defines the
required continuous function.

Now we recall the concept of the λ-sum in an equiconnected space (X,λ) (see [4]).
For every n ∈ N we put

Sn = {(αk)nk=1 ∈ Rn : α1 + · · ·+ αn = 1, α1, . . . , αn ≥ 0}.

We define inductively a sequence of mappings λn : Xn × Sn → X. For n = 1 we set

λ1(x, 1) = x

for all x ∈ X. If n ∈ N, x1, . . . , xn+1 ∈ X and (α1, . . . , αn+1) ∈ Sn+1, then we set

λn+1(x1, . . . xn+1, α1, . . . , αn+1)

= λn

(
λ
(
x1, x2,

α2
α1 + α2

)
, x3, . . . xn+1, α1 + α2, α3 . . . , αn+1

)
,

in the case α1 + α2 > 0, and

λn+1(x1, . . . xn+1, α1, . . . , αn+1) = λn(x2, x3, . . . xn+1, α2, α3 . . . , αn+1),

in the case α1 + α2 = 0.

Definition 2.2. For any n ∈ N, (α1, . . . , αn) ∈ Sn and for any x1, . . . xn from an
equiconnected space (X,λ) the element λn(x1, . . . xn, α1, . . . , αn) is called the convex
combination of elements x1, . . . xn with coefficients α1, . . . , αn.
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Definition 2.3. Let (I,≤) be a completely ordered set, (xi)i∈I be a family of points
of an equiconnected space (X,λ) and let (αi)i∈I be a collection of non-negative scalars
with

(1) {i ∈ I : αi 6= 0} = {ik : 1 ≤ k ≤ n};
(2) i1 < i2 < . . . < in;
(3) αi1 + αi2 + · · ·+ αin = 1.

Then λn(xi1 , . . . , xin , αi1 , . . . , αin) is called the λ-sum of (xi)i∈I with the coefficients
(αi)i∈I and is denoted by

∑
i∈I

λ
αixi.

We observe that
∑
i∈I

λ
αixi =

∑
i∈Iαixi for any topological vector space X.

If A is a subset of an equiconnected space (X,λ), then

λ0(A) = A, λn(A) = λ(λn−1(A), A, [0, 1]) for n ∈ N,

λ∞(A) =
∞⋃

n=1
λn(A).

Definition 2.4. An equiconnected space (X,λ) is locally convex [2] if for any x ∈ X
and a neighborhood U of x there is a neighborhood V of x such that λ∞(V ) ⊆ U .

Definition 2.5. A topological space (X,S) is called metrically quarter-stratifiable
(see [2, Definition 2.1] and [2, Theorem 2.2]) if it admits a weaker metrizable topology τ
(called its stratifying topology) with a sequence of τ -open coverings Un = (Ui,n : i ∈ In)
of X and a sequence ((xi,n : i ∈ In))∞n=1 of families of points from X such that for
every x ∈ X we have

∀(in)∞n=1

(
x ∈

∞⋂

n=1
Uin,n =⇒ xin,n → x

)
. (2.1)

Let us notice that (2.1) is equivalent to the following:

∀U − a neighborhood of x in (X,S) ∃n0 ∈ N ∀n ≥ n0 ∀i ∈ In
(x ∈ Ui,n =⇒ xi,n ∈ U).

(2.2)

Indeed, it is easy to see that (2.2)⇒(2.1). Now let x ∈ X and (2.1) holds. Assume
that (2.2) is not valid and take a neighborhood U of x, an increasing sequence (kn)∞n=1
of numbers and a sequence (jn)∞n=1 of indexes jn ∈ Ikn

such that x ∈ Ujn,kn
but

xjn,kn
6∈ U for every n ∈ N. Since (Ui,n : i ∈ In) is a covering of X for every n, we

choose sn ∈ In such that x ∈ Usn,n. For all n ∈ N we set in = jm if n = km for
some m ∈ N and in = sn, otherwise. Then the sequence (in)∞n=1 does not satisfy the
implication from (2.1), which implies a contradiction.

Definition 2.6. A topological space X is strongly countably dimensional if there
exist a sequence (Xn)∞n=1 of closed subspaces of X such that X =

⋃∞
n=1 Xn and

dimXn <∞ for every n ∈ N.
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Theorem 2.7. Let (X,S) be a metrically quarter-stratifiable space with its stratifying
metrizable topology τ , (Y, λ) be an equiconnected space. If one of the conditions holds

(i) (X, τ) is strongly countably dimensional, or
(ii) Y is locally convex,

then
C((X,S), Y ) ⊆ B1((X, τ), Y ).

Proof. Let f : (X,S)→ Y be a continuous mapping.
(i) Let (Xm)∞m=1 be a sequence of closed subspaces of (X, τ) such that X =⋃∞

m=1 Xm and dimXm <∞ for every m ∈ N. Since X is metrically quarter-stratifiable,
we take a sequence ((Ui,n : i ∈ In))∞n=1 of τ -open coverings of X and a sequence
((xi,n : i ∈ In))∞n=1 of families of points from X. By [3, Theorem 5.1.10], for every
n ∈ N we may choose a locally finite refinement Vn = (Vj,n : j ∈ Jn) of the open
covering (Ui,n : i ∈ In) of the paracompact strongly countably dimensional space
(X, τ) such that for all m ∈ N and x ∈ Xm there exists a neighborhood U of x with

|{j ∈ Jn : U ∩ Vj,n 6= ∅}| ≤ m.

Fix n ∈ N and take a locally finite partition of unity (ϕj,n : j ∈ Jn) on (X, τ)
subordinated to Vn. For every j ∈ Jn we denote by uj,n an element xi,n with Vj,n ⊆ Ui,n.
Assume that the set Jn is completely ordered and define fn : X → Y by the formula

fn(x) =
∑

j∈Jn

λ
ϕj,n(x)f(uj,n). (2.3)

It follows from [4, Theorem 3.2] that fn is continuous on (X, τ).
We prove now that fn(x) → f(x) for every x ∈ X. Fix x0 ∈ X and consider

a neighborhood W of y0 = f(x0) in Y . Let m be a number such that

|{j ∈ Jn : x0 ∈ Vj,n}| ≤ m

for every n ∈ N. The continuity of λm, the equality

λm(y0, . . . , y0, α1, . . . , αm) = y0

for all (α1, . . . , αm) ∈ Sm and compactness of Sm imply the existence of a neighborhood
W1 of y0 in Y with

λm(y1, . . . , ym, α1, . . . , αm) ∈W
for all y1, . . . , ym ∈W1 and (α1, . . . , αm) ∈ Sm. Since the mapping f is continuous at
the point x0, there exists an S-open neighborhood U of x0 such that f(x) ∈W1 for
every x ∈ U . Using (2.2) we choose a number n0 such that uj,n ∈ U for all n ≥ n0 and
j ∈ Jn with x0 ∈ Vj,n.

We show that fn(x0) ∈W for every n ≥ n0. Let n ≥ n0 be fixed and

J = {j ∈ Jn : x0 ∈ Vj,n} = {j1, j2, . . . jk},
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where j1 < j2 < . . . < jk and k ≤ m. Denote
α1 = ϕj1,n(x0), . . . , αk = ϕjk,n(x0), y1 = f(xj1,n), . . . , yk = f(xjk,n).

Then y1, . . . yk ∈W1. Hence,
fn(x0) = λk(y1, . . . , yk, α1, . . . αk) = λm(y1, . . . , yk, y0, . . . , y0, α1, . . . αk, 0, . . . , 0) ∈W
by [4, Proposition 2.3].

(ii) We consider sequences ((Ui,n : i ∈ In))∞=1 of τ -open coverings of X and
((xi,n : i ∈ In))∞n=1 of families of points from X such that (2.2) holds. Since (X, τ) is
a paracompact space, for every n ∈ N we take a locally finite refinement (Vj,n : j ∈ Jn)
of (Ui,n : i ∈ In). For every j ∈ Jn by uj,n we denote a point xi,n such that Vj,n ⊆ Ui,n.
Let (ϕj,n : j ∈ Jn) be a locally finite partition of unity on (X, τ) subordinated to the
covering (Vj,n : j ∈ Jn). For every n ∈ N and x ∈ X we define a mapping fn : X → Y
by the equality (2.3) and observe that fn is continuous on (X, τ) by [4, Theorem 3.2].

It remains to show that fn(x)→ f(x) on X. Fix x0 ∈ X and a neighborhood W
of y0 = f(x0). Since Y is locally convex, there exists a neighborhood W1 of y0 in Y
such that

λ∞(W1) ⊆W.
Since f is continuous on the space (X,S) at x0, we may choose a neighborhood U
of x0 in (X,S) such that f(x) ∈ W1 for every x ∈ U . Using (2.2) we take a number
n0 with uj,n ∈ U for all n ≥ n0 and j ∈ Jn with x0 ∈ Vj,n. In order to show that
fn(x0) ∈W for all n ≥ n0 we fix n ≥ n0 and set

J = {j ∈ Jn : x0 ∈ Vj,n} = {j1, j2, . . . , jk},
where j1 < j2 < . . . < jk. Denote

α1 = ϕj1,n(x0), . . . , αk = ϕjk,n(x0), y1 = f(xj1,n), . . . , yk = f(xjk,n).
Then y1, . . . yk ∈W1 and

fn(x0) = λk(y1, ..., yk, α1, ..., αk) ∈ λk(W1) ⊆W.
Therefore, f ∈ B1((X, τ), Y ).

3. MAPPINGS ON A PRODUCT OF THE SORGENFREY LINES

Lemma 3.1. For any at most countable set T the product ST is metrically
quarter-stratifiable and a topology τ from Definition 2.5 is the Tykhonoff topology
on RT .
Proof. We consider the case |T | = ℵ0. For all n, k ∈ N we set In,k = Z, In =∏∞
k=1 In,k = Zℵ0 and Xn = R. Now for all n ∈ N and i = (ik)∞k=1 ∈ In we put

Ui,n =
n∏

k=1

( ik − 1
n

,
ik + 1
n

)
×

∞∏

k=n+1
Xk,

xi,n =
( i1 + 1

n
, . . . ,

in + 1
n

, 0, 0, . . .
)
.
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We verify that the defined sequences ((Ui,n : i ∈ In))∞n=1 of open coverings of Rℵ0

and points ((xi,n : i ∈ In))∞n=1 satisfy the properties indicated in Definition 2.5.
Let x = (ξ1, ξ2, . . . ) ∈ Rℵ0 and let U = U1 × · · · × Um × Xm+1 × . . . be a basic
neighborhood of x in Sℵ0 . For every k = 1, . . . ,m we take nk ∈ N such that for all
n ≥ nk and ik ∈ In,k the inclusion ξk ∈ ( ik−1

nk
, ik+1
nk

) implies that ik+1
nk
∈ Uk. We set

n0 = max{m,n1, . . . , nm}. Assume that n ≥ n0 and i ∈ In be such that x ∈ Ui,n.
Then, obviously, xi,n ∈ U .

Theorem 2.7 and Lemma 3.1 immediately imply the following result.
Theorem 3.2. Let Y be an equiconnected space. Then

C(Sn, Y ) ⊆ B1(Rn, Y )

for any n ∈ N. If Y is a locally convex equiconnected space, then

C(Sℵ0 , Y ) ⊆ B1(Rℵ0 , Y ).

Theorem 3.3. Let Y be a metrizable connected and locally arcwise connected space.
Then

C(ST , Y ) ⊆ B1(RT , Y )
for any at most countable set T .
Proof. Consider a continuous mapping f : ST → Y , where |T | ≤ ℵ0. Take an arbitrary
open set V ⊆ Y and a continuous function g : Y → R with V = g−1((0,+∞)).
Let h = g ◦ f . Then h ∈ B1(RT ,R) by Theorem 3.2. Consequently, the preimage
f−1(V ) = h−1((0,+∞)) is an Fσ-set in RT . Since the space Z = f(ST ) is separable
as a continuous image of the separable space ST , Theorem 1 from [5] implies that
f ∈ B1(RT , Y ).

Theorem 3.4. Let Y be a metrizable connected and locally arcwise connected space.
Then

C(ST , Y ) ⊆ B1(RT , Y )
for any set T .
Proof. The case |T | ≤ ℵ0 is considered in Theorem 3.3.

Assume that |T | > ℵ0 and let f : ST → Y be a continuous mapping. By [6] there
exists a countable set T0 ⊆ T such that for all x, u ∈ ST the equality x|T0 = u|T0

implies the equality f(x) = f(u). Define the continuous mapping ϕ : ST → ST0 by
the rule ϕ(x) = x|T0 for all x ∈ ST and put g(u) = f(x) if u = ϕ(x) for some x ∈ ST .
Observe that the mapping g : ST0 → Y is well-defined and continuous. According
to Theorem 3.3 we have g ∈ B1(RT0 , Y ). Take a sequence of continuous mappings
gn : RT0 → Y which is convergent to g on RT0 pointwise. For all n ∈ N and x ∈ RT
we put hn(x) = gn(ϕ(x)). Then

lim
n→∞

hn(x) = lim
n→∞

gn(ϕ(x)) = g(ϕ(x)) = f(x).

Hence, f ∈ B1(RT , Y ).
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Theorems 3.2–3.4 imply the ensuing corollary.

Corollary 3.5. Let Y be a topological vector space. Then the inclusion C(ST , Y ) ⊆
B1(RT , Y ) is valid if one of the following conditions hold:

a) |T | < ℵ0,
b) Y is a locally convex space and |T | ≤ ℵ0,
c) Y is metrizable.

The following question is open.

Question 3.6. Does the inclusion C(ST , Y ) ⊆ B1(RT , Y ) hold for |T | = ℵ0 and any
topological vector space Y ?
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