Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The machining residual stress produced in the cutting process of aluminum alloy parts can easily lead to a scrap of the processed parts. In order to reduce the residual stress of aluminum alloy in the milling process, based on the Taguchi-Grey relational approach, the effects of different milling parameters on the residual stress and surface roughness of 2A12 aluminum alloy were studied. To reduce the residual stress and surface roughness of 2A12 aluminum alloy, optimized milling parameters were obtained. To further reduce the milling residual stress of 2A12 aluminum alloy, the samples processed by the optimized milling parameters were treated by cryogenic treatment and artificial aging. The residual stress of the sample was measured by the blind hole drilling method, and the evolution mechanism of the microstructure to reduce the machining residual stress was revealed. The results show that the combination of deep cooling treatment and oil bath aging can effectively reduce the residual stress on the machined surface of the aluminum alloy and facilitate a more uniform distribution of the residual stress inside the specimen. The effect of the coarse second phase on the residual stress in the microstructure is not significant, and the fine and diffusely distributed precipitation phase is beneficial to the reduction of the residual stress in the aluminum alloy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
921--932
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
- Taiyuan University of Science and Technology, School of Mechanical Engineering, China
autor
- Taiyuan University of Science and Technology, School of Mechanical Engineering, China
autor
- Taiyuan University of Science and Technology, School of Mechanical Engineering, China
autor
- Taiyuan University of Science and Technology, School of Mechanical Engineering, China
autor
- Taiyuan University of Science and Technology, School of Mechanical Engineering, China
autor
- Taiyuan University of Science and Technology, School of Mechanical Engineering, China
autor
- Taiyuan University of Science and Technology, School of Mechanical Engineering, China
Bibliografia
- [1] Y.B. Dong, W.Z. Shao, L.X. Lu, J. Mater. Eng. Perform. 24 (12), 4928-4940 (2015). DOI: https://doi.org/10.1007/s11665-015-1758-9
- [2] X.Z. Wang, Z.L. Li, Q.Z. Bi, Int. J. Mach. Tools Manuf. 142, 98-106 (2019). DOI: https://doi.org/10.1016/j.ijmachtools.2018.12.004
- [3] W.P. Yang, Y. Tarng, J. Mater. Process. Technol. 84 (1-3), 122-129 (1998). DOI: https://doi.org/10.1016/S0924-0136(98)00079-X
- [4] Q. Zhang, M. Mahfouf, J. Yates, Mater. Manuf. Process. 26 (3), 508-520 (2011). DOI: https://doi.org/10.1080/10426914.2010.537421
- [5] Q. Tang, X. Zhao, D. Wang. Mod. mach. 01, 1-4 (2016). DOI: https://doi.org/10.13667/j.cnki.52-1046/th.2016.01.001
- [6] G. Taguchi, Introduction to quality engineering: designing quality into products and processes, McGraw-Hill, New York (1986).
- [7] P.J. Ross, Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, McGraw-Hill, New York (1988).
- [8] J.R. Philip, Taguchi techniques for quality engineering, McGrawHill, New York (1988).
- [9] G.H. Wu, J. Qiao, L.T. Jiang, Acta Metall. Sin. 55 (1), 33-44 (2019). DOI: https://doi.org/10.11900/0412.1961.2018.00482
- [10] M. Koç, J. Culp, T. Altan, J. Mater. Process. Technol. 174, 342-354 (2006). DOI: https://doi.org/10.1016/j.jmatprotec.2006.02.007
- [11] M. Koneshlou, K.M. Asl, F. Khomamizadeh, Cryogenics. 51 (1), 55-61 (2011). DOI: https://doi.org/10.1016/j.cryogenics.2010.11.001
- [12] A. Molinari, M. Pellizzari, S. Gialanella, J. Mater. Process. Technol. 118 (1-3), 350-355(2001). DOI: https://doi.org/10.1016/S0924-0136(01)00973-6S
- [13] M. Araghchi, H. Mansouri, R. Vafaei, Mater. Sci. Eng. A. 689, 48-52 (2017). DOI: https://doi.org/10.1016/j.msea.2017.01.095
- [14] Z.J. Weng, X.Z. Liu, K.X. Gu, Mater. Sci. Technol. 36 (14), 1547-1555 (2020). DOI: https://doi.org/10.1080/02670836.2020.1800182
- [15] Q.C. Wang, Research on residual stress relief and evaluation technology of aviation aluminum alloy, Thesis, Zhejiang University, Hangzhou, CN310058, October.
- [16] X.M. Niu, Y. Huang, X.G. Yan, J. Mater. Eng. Perform. 30, 1-10 (2021). DOI: https://doi.org/10.1007/s11665-021-06136-x
- [17] J. Unnikrishnapillai, I. Sanghrajka, M. Shunmugavel, Measurement. 124, 291-298 (2018). DOI: https://doi.org/10.1016/j.measurement.2018.04.052
- [18] S.R. Zhao, Numerical simulation and parameter optimization of tap tapping process for machining 316L stainless steel, Thesis, Taiyuan University of Science and Technology, Taiyuan, CN 030024, June.
- [19] G. Anand, N. Alagumurthi, R. Elansezhian, J. Braz. Soc. Mech. Sci. Eng. 40 (4), 214 (2018). DOI: https://doi.org/10.1007/s40430-018-1137-1
- [20] H.S. Gau, C.Y. Hsieh, C.W. Liu, Stoch. Env. Res. Ris. A. 20 (6), 407-421(2006). DOI: https://doi.org/10.1007/s00477-006-0034-9
- [21] R. Pan, T. Pirling, J.H. Zheng, J. Mater. Process. Technol. 264, 454-468 (2019). DOI: https://doi.org/10.1016/j.jmatprotec.2018.09.034
- [22] R.H. Ding, Cast. Tech. 09, 2122-2125 (2017). DOI: https://doi.org/10.16410/j.issn1000-8365.2017.09.017
- [23] Z.J. Weng, K.X. Gu, K.K. Wang, Mater. Sci. Eng. A. 772, 1-8 (2020). DOI: https://doi.org/10.1016/j.msea.2019.138698
- [24] Z.Q. Tian, K.X. Wei, W Wei, Heat Treat. Met. 42 (02), 54-58 (2017). DOI: https://doi.org/10.13251/j.issn.0254-6051.201
- [25] X.Y. Ji, F.W. Jin, Hot Process. Tech. 48 (16), 32-35 (2019). DOI: https://doi.org/10.14158/j.cnki.1001-3814.2019.16.006
- [26] G.P. Tang, W.R. Huang, Heat Treat. Met. 41 (6), 36-45 (1998). DOI: https://doi.org/10.1088/0256-307X/16/12/013
Uwagi
1. The authors gratefully acknowledge the support of Natural Science Foundation of Shanxi Province, China (202103021224280); Jincheng Science and Technology Plan Project, China (20198025); Excellent Graduate Innovation Project of Shanxi Province, China (2019SY476).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56c8730d-81d7-4b21-b80e-3aecf26c98c0