PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of Microwave Penetration Depth on the Process of Heating the Moulding Sand with Sodium Silicate

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. For each material it is affected by: the wavelength in vacuum and the real and imaginary components of the relative complex electrical permittivity εr for a selected measurement frequency. Since the components are not constant values and they change depending on the electrical parameters of materials and the frequency of the electromagnetic wave, it is indispensable to carry out laboratory measurements to determine them. Moreover, the electrical parameters of materials are also affected by: temperature, packing degree, humidity and conductivity. The measurements of the dielectric properties of moulding sand with sodium silicate was carried out using the perturbation method on a stand of waveguide resonance cavity. The real and imaginary components of the relative complex electrical permittivity was determined for moulding sand at various contents of sodium silicate and at various packing degrees of the samples. On the basis of the results the microwave penetration depth of moulding sand with sodium silicate was established. Relative literature contains no such data that would be essential to predicting an effective process of microwave heating of moulding sand with sodium silicate. Both the packing degree and the amount of sodium silicate in moulding sand turned out to affect the penetration depth, which directly translates into microwave power density distribution in the process of microwave heating of moulding sand with sodium silicate.
Rocznik
Strony
115--118
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Foundry Engineering, Plastics and Automation, Wrocław University of Science and Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, Poland
Bibliografia
  • [1] Hering, M. (1998). Electrothermal basics part 2. Warszawa: WNT. (in Polish).
  • [2] Lisowski, M. (2004). Measurement of resistivity and permeability of electrical dielectric constant. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej. (in Polish).
  • [3] Chenhui, L., Libo, Z., Jinhui, P., Srinivasakannan, Ch., Liu, B., Hongying, X., Junwen, Z. & Lei, X. (2013). Temperature and moisture dependence of the dielectric properties of silica sand. The Journal of Microwave Power and Eelectromagnetic Energy. 47(3), 199-209.
  • [4] Fratticcioli, E., Dionigi, M. & Sorrentino, R. (2003). A New Permittivity Model for the Microwave Moisture Measurement of Wet Sand. 33rd European Microwave Conference, 2-10 Oct. 2003 (pp.539-542) Munich, Germany. DOI: 10.1109/EUMA.2003.341009.
  • [5] Abidin, K. (2001). Electrical Spectroscopy of Kaolin and Bentonite Slurries. Turk J Engin Environ Sci. 25, 345-354.
  • [6] Hashemi, A., Rashidi, M., Kurtis, K.E., Donnell, K.M. & Zoughi, R. (2016). Microwave dielectric properties measurements of sodium and potassium water glasses. Materials Letters. 69, 10-12.
  • [7] Grabowska, B. (2009). Microwave crosslinking of polyacrylic compositions containing dextrin and their applications as molding sands binders. Polymers, 54(7-8), 507-513.
  • [8] Abidin, K. & Hsai-Yang F. (1997). Identification of contaminated soils by dielectric constant and electrical conductivity. Journal of Environmental Engineering. 123(2), 169(9). DOI 10.1061/(ASCE)0733-9372(1997)123:2(169.
  • [9] Tong, L., Haihui, Z. & Xingfa, G. (2014). The complex permittivity measurement of powder materials and the dielectric constant of lunar soil. Measurement. 48, 6-12.
  • [10] Shi, W., Qi, Z., Gang, W., Lei, Y., & Cheng, L. (2011). The relationship between electrical capacitance-based dielectric constant and soil water content, Environmental Earth Sciences. 62(5), 999-1011.
  • [11] Huafang, W., Wenbang, G. & Jijun, L. (2014). Improve the Humidity Resistance of Sodium Silicate Sands By Ester-Microwave Composite Hardening. Metalurgija, 53(4), 455-458.
  • [12] Grabowska, B., Sitarz, M., Olejnik, E., Kaczmarska, K. & Tyliszczak, B. (2015). FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch – In moulding sands, Part II. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151, 27-33. DOI: 10.1016/j.saa.2015.06.084.
  • [13] Stachowicz, M., Opyd, B. & Granat, K. (2015). Comprehensive assessment of polymeric materials for foundry tooling used in microwave field. Arch. Metall. Mater. 60(1), 335-339. DOI: 10.1515/amm-2015-0055.
  • [14] Linxin, Y., Weiqiang, Q., Yalan, Y., Kyung Ho, R., Yudong, Ch. & Yinzhe, J. (2017). Dielectric properties of Antarctic krill (Euphausia superba) and white shrimp (Penaeus vannamei) during microwave thawing and heating. Journal of Microwave Power and Electromagnetic Energy. 51, 3-30. DOI: 10.1080/08327823.2017.1291067.
  • [15] Mujumdar, A.S. (2014). Handbook of Industrial Drying. (4th ed.). CRC Press.
  • [16] Peng, Z., Hwang, J., Mouris, J., Hutcheon, R. & Huang, X. (2010). Microwave Penetration Depth in Materials with Non-zero Magnetic Susceptibility. ISIJ International. 50 (11), 1590-1596.
  • [17] Opyd, B., Granat, K. & Nowak, D. (2015). Determination of electrical properties of materials used in microwave heating of foundry moulds and cores. Metalurgij., 54 (2), 347-349.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56c3217a-70e3-4ac5-bc65-5d5581e32a9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.