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ABSTRACT: In this paper, we show that the Dirac delta is a useful technical tool in modelling signals but hard
to think about it as a physical signal itself. This thesis is supported here by an example coming from the field of

measuring physical quantities and measurement theory.

1 INTRODUCTION

In research papers and textbooks on systems theory
and signal processing, in case of using a mathematical
concept: the Dirac distribution (called also a Dirac
delta or a Dirac impulse) in them - in different
contexts — it is assumed that this distribution can be
used both as an operator and as a signal (Prandoni P.,
Vetterli M. 2008), (Vetterli M., Kovacevic ]., Goyal V.
K. 2014), (Ingle K., Proakis J. G. 2012), (Oppenheim A.
V., Schafer R. W., Buck J. R. 1998), (Dabrowski A.
2008), (Howell K. B. 2001), (Gasquet C., Witomski P.
1998), (Osgood B. 2014). That is it can play a role of an
operator, but also a role of a signal. And it seems that
in engineering sciences, particularly in systems
theory, this way of thinking has its roots in the fact
that any linear (non-pathological) system can be
described by the following convolution integral:

y(t):jzh(r)x(t—r)dr, 1)

where y(t) and x(f) mean an output and an input
signal of a system, respectively. This system is
assumed to be characterized by its system’s function

(called also its impulse response) h(t). Variable ¢ in (1)
stands for a continuous time.

Mathematically, (1) can be viewed as an operator
that maps input signals x(#)’s into output signals y(t)’s
of a given system. Moreover, it is well known that (1)
is well determined for all the impulse responses h(t)’s
as well as signals x(#)’s which occur in engineering.

Furthermore, the functions denoted as h(t) and x(t)
in (1), and which occur in engineering, can act as both:
system’s functions as well as system input signals. To
see this, let us introduce an auxiliary variable
t'=t—7 in(1). This leads to
y(t)=—[ h(t-t)x(t')dt'= [ x(t")h(t-t')dt". @)

0 —0

And finally, naming the auxiliary variable " by 7,
we obtain from (2) the following:

y(t)= [ X(r)h(t-r)dr. 3)

Note that now in (3) x(#) plays a role of a system’s
function, while h(t) a role of an input signal of this
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system. That is the opposite of what was before, in (1).
Or, in other words, this shows we are not able to say
what is a system’s function and what its input signal
in a pair: h(t), x(t) — knowing only the output signal
y(t). That is h(t) and x(t) commute with each other (in
their roles) in the convolution integral operator given

by (1).

The so-called Dirac delta is an object that is also
used in the systems theory and signal processing
(more generally, in engineering). And, in the
engineering literature, it is most often denoted by a
symbol J&t), what suggests that it could be treated as a
function (although we know very well that it is not).
However, due to this belief (that it can be handled as a
function), it is used by engineers in both roles in (1).
That is as a system’s function as well as an input
signal — in the same way as h(t) and x(t) considered
above.

Let us take now a closer look at this issue. And,
consider first the case when h(t) in (1) is assumed to be
a Dirac impulse. So this allows us to rewrite (1) in the
following form:

y(t):j;(')‘(r)x(t—r)dr:x(t). @

Further, note that the outcome on the right-hand
side of equality (4) results from applying the so-called
sifting property of the Dirac delta therein. And this
allows us to conclude that the Dirac delta makes an
identity operator from a convolution one.

The notation of the convolution integral containing
a Dirac delta, as in (4), requires one explanation more
because such an integral does not in fact exist, neither
in the Riemann's sense nor in the Lebesgue's sense.
Nevertheless, because of the convenience and habit,
this notation is used by engineers for denoting
something what must be mathematically understood
as a distribution. And this terminological convention
will be used in what follows.

Let us check whether &t) and x(t) in (4) commute
with each other. And, to this end, assume that the
operation given by (4) also possesses the properties
which were exploited in transforming (1) to (3) — with
the intermediate step shown in (2). So performing
now the same manipulations as those indicated from
(1) to (3) above, that is

y(t) =—T§(t—t')x(t')dt’: T x(t)s(t—t")dt, ©)
we get
y(1)= [ X(r)5(t-7)dr = x(t). 6)

Comparison of (4) with (6) allows us to say that
really &t) and x(t) commute with each other (in their
roles of a system’s function and a system’s input
signal). At least mathematically, this seems to be fully
true and correct.

In the next section, we examine whether physical
systems exhibit this property.
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2 DIRAC DELTA AND INPUT SIGNAL DO NOT
ALWAYS COMMUTE IN DESCRIPTIONS OF
LINEAR PHYSICAL SYSTEMS

The flagship example given in engineering textbooks
to justify the validity, or even the necessity, of using
the Dirac delta concept in describing various physical
phenomena is the process of measuring temperature,
voltage, current, for example. The author of this paper
analyzed critically the process of measuring any
physical quantity in general as well as measuring
temperature in particular — in the following papers:
(Borys A. 2020a), (Borys A. 2020b), (Borys A. 2020c) —
in terms of the validity of using Dirac deltas in their
descriptions. The results achieved there will serve as a
starting point for the considerations of this section.

It has been shown in (Borys A. 2020c) that the
process of measuring of a physical quantity (such as,
for example, temperature) in time can be described in
a similar way as one describes the sampling of a

signal of a continuous time. This is shown
schematically in Fig. 1.
x(1)
1 T T >
0 Ta T\' !

Figure 1. Illustration to modelling a measuring process via
the description of sampling signals of a continuous time as
discussed in (Borys A. 2020c). In this approach, we assume
that the measuring device "delivers" values of the measured
physical quantity in a stepwise manner. The length of each
step is assumed to be equal to T: seconds. Further, during
each of these steps, it is assumed that the measuring device
averages the measured quantity a time equal to T«<Ts. The
averaged values are assigned successively to time intervals
starting from the beginning of a given step (lasting Ts
seconds) to its end (the same value of the measured physical
quantity applies to all time instants belonging to a given
interval). (This figure is based on a one, which was used in
discussions presented in (Borys A. 2020c)).

Denote now by x(t) a waveform according to
which a physical quantity changes in time (for
example, the temperature mentioned above).
Obviously, because of the reasons mentioned above,
the measuring device is unable to provide us with this
waveform in an undistorted manner. Here, we model
its behavior as illustrated in Fig. 1 and as described in
the caption to this figure. And we look for an
analytical expression describing a signal registered by
our measuring device; we denote it by y(%).

Let us start with calculation of the value of the
signal y(t) that is applicable in the interval 0<t<T,.
Denote it by Y, (0-T, +Ta) =Vy,(T,) it will be given

A (Ta)=TJ§X(t)(p(t)dt/ (7)

where @(t) means an averaging function.

In the next step, to illustrate the averaging
operation in time given by (7), let us choose the
simplest possible form of ¢(t) therein that fulfils the



conditions for such functions formulated in (Strichartz
R. 1994). That function has the following form:

(8)

T, for 0<t<T,
o(t)=
0 elsewhere .

Substituting (8) into (7) gives

Tigx(t)dt. )

Now we will show that as the following property:
o(t)=¢(-(t-T,)) holds in the case of the function
(8), (7) can be expressed equivalently as a convolution
integral. To this end, we rewrite (7) in the following
way:

In derivation of the final result in (10), we have
additionally used an auxiliary variable z=-(t-T.) and
the fact that the function ¢(t) given by (8) is identically
equal to zero outside the interval (O,Ta$ .

In the next step, note that a similar relation as (9)
for ya(Ts) can be written for every y«(kTs+Ts), where
k=...,-1,0,1,.... That is the following one:

KT +T,

Yo (KT +T,)= [ x()e(t—kT,)dt.

kT,

(11)

Further, to get a similar expression as (10), we use
the fact that ¢(t-KT,)=¢(—(t—KT,-T,)) holds for the
function ¢(t) given by (8). So (11) can be re-written as

y, (KT, +T,) = kj X(t)p(—(t—KT, =T, ))dt =
= —])‘ X(KT, +T, —7)p(7r)dr=

T

a

p(7)x(KT,+T, —7)dz = (12)

o —

0

= j p(7)x(KT,+T,-7)d7 .

—o0

Note that in derivation of the final result in (12),
we have used an auxiliary variable 7=—(t—KT,-T,)
and, similarly as before, the fact that the function ¢(t)
given by (8) is identically equal to zero outside the
interval (O,Ta>.

Having derived the results (12) and (10) (where the
latter is a special case of (12) for k=0), we are able now
to express the signal y(¢) for all times. It will be given

by

V(O =y, (T 4T) = [ p()x(KT 4T, =r)dr  (13)

for t belonging to the successive time intervals
KT, <t <(k+1)T, when k assumes successively the

values k=...,-1,0,1,....

Further, observe that the function given by (13) is a
step function with the values of its steps equal to the
corresponding Yo (KT, +T,)'s, k=...-1,01,....
occurring in the successive time segments
KT, <t <(k+1)T,, k=...,-1,0,1,....

It is interesting to note that the function given by
(13) can be expressed also in another way, as a sum of
some functions. And, to see this, let us start with
defining first these functions; we define them in the
following way:

Yo (KT +T,) = [ o(z) (KT, +T, -7)dr

for KT, <t <(k+1)T,

and

Yir, (1) = (14)

0 outside the above range of t's

with k’s in (14) that may take the following values:
...,-1,0,1,.... So, with the help of the functions given by
(14), we can express y(t) from (13) in a compact way as
follows:

(15)

y(t) = kgw Yir, (t) :

As already said in Introduction, in various
technical disciplines which use descriptions in form of
convolution integrals, it is assumed that what stands
on the left-hand side under a convolution integral is
related with some operator (operation) performed on
a signal (physical quantity) varying in time — the latter
standing on the right-hand side under the above
integral. Obviously, this matter of occupied position is
a matter of convention, but it has its justification in
what the convolution integral is used for in
engineering sciences. Figuratively speaking, we could
express this in the following way: a convolution
integral weaves together two roles: of a transforming
operation (performed by a system considered) and of
being a signal (physical quantity), which is subjected
to the action of the former. And as already said, the
first role is customarily assigned to the left-hand side
under the integral, and the second to its right-hand
side.

So, now with regard to the convolution integrals
occurring in the expressions (13) and (14), the function
@(t) is playing therein a role of a transforming
operation, but the function x(t) a role of a physical
quantity (for example, of a temperature varying with
time). And, as already known from the considerations
presented in Introduction, as long as these functions
remain "decent" (what we mean under this term is
explained below), they can perform both roles. That is
they can stand in a convolution integral on both
positions: being the left-hand side as well as the right-
hand side of the expression under the integral.
Unfortunately, when considering concrete physical
systems this is not always the case. In what follows,
we explain this point on an example of measuring a
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time-varying temperature; this example is considered
throughout the paper.

As we know, temperature as a physical quantity is
bounded. For example, let us consider the
temperature on Earth. We can say that this
temperature does not exceed the lower limit of -100
degrees Celsius and the upper limit of +100 degrees
Celsius. Consider it as changing with the passage of
time: opassing hours, days, years. So it will be
represented by a function of time. Further, let us
identify it with the function x(#) introduced
previously. So it will be a bounded function for which
we can write

|X(t)|< M for every t, (16)

where M denotes the bounding constraint imposed on
the function x(t).

Let us now take such a ¢(t) function occurring in
(13) and (14) which does not exhibit the constraint
given in (16). That is there are possible absolute values
of ¢(t) which exceed the value of M. In this case,
obviously, the functions x(t) and ¢(t) cannot change
their roles in (13) and (14) because ¢(t) so chosen is
not a physically reasonable function that describes the
temperature changes on Earth. In other words, the
above functions x(t) and ¢(t) do not commute (their
roles do not commute) in the integrals in (13) and (14)
because of physical reasons.

Of course, by dropping the condition (16) for the
function x(t), we "restore" the commutativity property
of the functions x(#) and ¢@(t) in the integrals in (13)
and (14), but at the cost that the function x(¢) will not
be able to be interpreted as a function that determines
temperature changes on Earth.

As we will see further on, the lack of
commutativity property of certain functions ¢(t) with
the function  describing temperature changes on
Earth will manifest itself in full as we move in the
formulas (13) and (14) from a finite-time averaging
operation (i.e. with a finite ) to "ideal" averaging in
time, i.e. with the value of the parameter T: going to
Zero.

The result presented in this section, which
indicates possibility of the lack of commutativity
property between an input signal at the input of a
linear system and its so-called system’s function —in a
description of that system, may seem a little bit
strange. We are accustomed to the fact that the
aforementioned property takes place. However, note
that the fact that this is not always the case has
already been pointed out by others, for example by
Irwin Sandberg in the following papers: (Sandberg I.
2008) and (Sandberg 1. 2000). So, really, the
commutativity property is not obligatory in linear
systems.

3 IDEAL AVERAGING

Let us now consider the case of a temperature
measurement, as in the example of the previous
section, where the averaging operation is performed
at ever shorter time intervals. Note that such a
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scenario is referred to in the literature, for example in
(Strichartz R. 1994) to justify the need for the use of a
Dirac delta. So, now, we will assume that in our
averaging function ¢(t), given by (8), the parameter T.
goes to zero. Thus, this function will approach the
Dirac's delta — in the sense of the series-based
distribution theory (see, for example, (Hoskins R. F.
2010), (Strichartz R. 1994) — in the integrals in the
expressions (13) and (14). And these formulas will
take then the following forms:

()= va (KT,) = [ 6(0)x(KT, —£)dr =x(KT.)  (17)

for t belonging to the successive time intervals
KT, <t <(k+1)T, when k assumes successively the
values k=...,-1,0,1,..., and

©

Y (KT,) = [ 8(r)x (KT, —7)dz = x(KT,)

for KT, <t <(k+1)T,

and

Yir,i (t) =

(18)

0 outside the above range of t's .

In (17) and (18), the values of Yy, (kT,)'s stand for
the corresponding Yy, (KT,)'s calculated in the case of
considering an ideal averaging; that is with the one in
which the parameter T, — 0. Obviously, the latter
means that the system’s function in this case
p(t)—> &(t) (in the sense explained, for example, in
(Hoskins R. F. 2010) and (Strichartz R. 1994)). And just
because of this reason, we speak here about an ideal
averaging (extending the subscript a at y, (KT;)'s to
ai). Moreover, for the same reasons, the letter "i" is
also added to as an subscript at y(t) in (17) and for
extending subscripts at vy, (t)'s in (18), ie. to
visualize y(t) -, (t) and k=...,-1,0,1,....

Taking into account the above changes in indices
requires (15) to be rewritten, too; namely as

(19)

()= 3 v (1),

Furthermore, note that the function yi(t) given by
(17) or (19) remains a step function (as its “non-ideal”
version given by (13) or (15)). Its steps in the
successive  time intervals: KT, <t<(k+1)T,, ,
k=...,-1,0,1,..., will be equal to the values of the
function x(t) at the successive time instants kT,
k=...,-1,0,1,....

We draw also the reader's attention to the fact that
the function yi(t) due to its shape as a step function is
not identical with the function x(t). In other words, the
following:

yi (t)=x(t) (20)

holds.

Finally in this section, note that the function x(#)
cannot replace in any way that action of the Dirac
delta (i.e. the action of performing an ideal averaging),
which we see in (17) or (18). Simply because of the



constraint (16) imposed on this function, which makes
it impossible to assume that it can grow to infinity for
some times — as it was possible with the function
go(t)—)ﬁ(t) in (13) and (14) (in the sense of the
series-based distribution theory (see, for example,
(Hoskins R. F. 2010), (Strichartz R. 1994))). And see
that this further reinforces what we discovered in the
previous section. Namely that the roles of the
functions ¢(t) and x(#) in description of the
temperature measurement with the use of the relation
(13) or (15) do not commutate with each other. In
general, the function x(t) should not be interpreted in
this case as a system’s function and ¢(t) as a signal at
the input of the measurement device (system). Always
the opposite should occur. That is the function x(t)
should be identified with the signal applied to a
system’s input, but ¢(t) should be identified with the
system’s function of this system.

4 DIRACDELTA AS A TECHNICAL MEANS TO
DETERMINE THE IMPULSE RESPONSE OF A
LINEAR SYSTEM

A commonly used method in the literature (Vlach J.,
Singhal K. 1983), (Sandberg 1. 2003) for determining
the system’s function (called also the impulse
response of a system) of systems having descriptions
in form of the convolution integral is to apply a Dirac
delta that is assumed then to be an input signal.
However, as well known, such signals are not really
encountered in engineering. So the Dirac impulse
should be then treated more as a technical means for
calculating a system’s function rather than a real
signal. Formally, see that applying X(t)=4(t) in (1),
we get

(21)

y(t)=_]ih(r)5(t—r)dr= h(t).

That is then the output signal of a system is equal
to its system’s function h(t), which, just because of the
application of the Dirac impulse at the input of a
system, is called its impulse response.

In the context of the above, note that to get the
result given by (21), we assumed in fact, tacitly, that in
the natural description of a linear system by a
convolution integral the unbounded input signals are
admissible therein. And just this assumption allowed
us to use x(t)=4t) in (1) to get (21).

But what to do when the input signals in the
convolution integral description (1) are not allowable
to exceed some values? As, for instance, in the
example analyzed in the previous section (see the
constraint (16)). Is it possible to determine the
system’s function from (1) despite the above
restriction or rather not?

We can reason in this case as follows. Let us insert
into (1) successive functions coming from a sequence
approximating the Dirac impulse in the sense of the
series-based distribution theory (see, for example,
(Hoskins R. F. 2010), (Strichartz R. 1994)) and check
each time whether the calculated convolution integral
exists. And finally, check whether this infinite

sequence of integrals possesses its limit for every time
instant (i.e. a limit function). If yes, one must conclude
that this procedure makes sense. And, we get a useful
result that provides us with the system’s function,
according to (21).

Note, however, that the procedure described above
is only partially applicable in (13) and (14): only at
those places, where the calculation of the values of
@(KT,+T,) is performed. In more detail, we get then
from (13) and (14)

Vs () =o(KT, +T,) = [ o(r)(T.+T, e (22)

for t belonging to the successive time intervals
kT, <t <(k+I1)T, when k assumes successively the

values k=...,-1,0,1,..., and

p(KT,+T,) = [ p(r) 8 (KT, +T, —7)dz

Yirs (1) = for KT, <t <(k+1)T,

and

(23)

0 outside the above range of t's,

respectively. The indices k’s in (23) may take the
following values: ...,-1,0,1,....

Further, from (15), we obtain

(24)

Ys (t) = kgw Yirs (t)

in the case considered. Moreover, note that the
function y4(t) in (22) or in (24) means y(¢) in (13) or in
(15) for a particular x()=&t). Similarly, Y., (t)'s in
(23) stand for vy, (t)'s in (14) for a particular
x(t)=A1).

In the next step, see that the function yt)
calculated in (22) or in (24), when the function ¢(t) is
given by (8), assumes the following form:

1
T)=—
o(T,) T
ys(t)=1for 0<t<T, (25)
and

0 outside the above range of t's .

Comparison of the function y«(t) given by (25) with
the function ¢(t) given by (8) shows that they differ
from each other.

One may ask why this happens. The answer is
rather obvious. A mapping of the signal x(t) to the
measured one, y(t), performed by a measuring
equipment consists not only of a locally performed
convolution operations (convolution integrals). It also
includes a momentary (delayed) holding of the
"worked out" average value in the measuring device.
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5 CONCLUSIONS

Under assumption of an ideal operation of some
systems, the so-called Dirac deltas (Dirac impulses)
appear in their descriptions. Unfortunately, in many
textbooks and papers, they become a source of
misinterpretations and errors. One of such basic errors
lies in the fact that the Dirac impulse is uncritically
assumed to be a one of the possible signals that can
appear in the ideal description of a given system. That
is it can be treated interchangeably with its so-called
impulse response. But it cannot, and this is pointed
out in this paper. An example of a device, which
measures temperature, was used here to illustrate the
analysis, derivations and discussion presented.
Another example of this type, coming from the theory
of sampling ideally analog signals, is discussed in
another work (Borys A. 2023) of the author of this

paper.
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