PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulative investigation of rubber damper elements for planetary touch-down bearings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Designing touch-down bearings (TDB) for outer rotor flywheels operated under high vacuum conditions constitutes a challenging task. Due to their large diameters, conventional TDB cannot suited well, and a planetary design is applied, consisting of a number of small rolling elements distributed around the stator. Since the amplitude of the peak loads during a drop-down lies close to the static load rating of the bearings, it is expected that their service life can be increased by reducing the maximum forces. Therefore, this paper investigates the influence of elastomer rings around the outer rings in the TDB using simulations. For this purpose, the structure and the models used for contact force calculation in the ANEAS simulation software are presented, especially the modelling of the elastomers. Based on the requirements for a TDB in a flywheel application, three different elastomers (FKM, VMQ, EPDM) are selected for the investigation. The results of the simulations show that stiffness and the type of material strongly influence the maximum force. The best results are obtained using FKM, leading to a reduction of the force amplitude in a wide stiffness range.
Rocznik
Strony
art. no. e139615
Opis fizyczny
Bibliogr. 17 poz., il., wykr., tab.
Twórcy
  • Technical University of Darmstadt, Institute for Mechatronic Systems, Germany
autor
  • Technical University of Darmstadt, Institute for Mechatronic Systems, Germany
  • Technical University of Darmstadt, Institute for Mechatronic Systems, Germany
Bibliografia
  • [1] L. Quurck, H. Schaede, M. Richter, and S. Rinderknecht, “High Speed Backup Bearings for Outer-Rotor-Type Flywheels – Proposed Test Rig Design,” in Proceedings of ISMB 14, Linz, Austria, 2014, pp. 109–114.
  • [2] L. Quurck, D. Franz, B. Schüßler, and S. Rinderknecht, “Planetary backup bearings for high speed applications and service life estimation methodology”. Mech. Eng. J., vol. 4, no. 5, 2017, doi: 10.1299/mej.17-00010.
  • [3] L. Quurck, R. Viitala, D. Franz, and S. Rinderknecht, “Planetary Backup Bearings for Flywheel Applications”, in Proceedings of ISMB 16, Beijing, China, 2018.
  • [4] J. Cao, P. Paul Allaire, T. Dimond, C. Klatt, and J.J.J. van Rensburg, “Rotor Drop Analyses and Auxiliary Bearing System Optimization for AMB Supported Rotor/Experimental Validation – Part II: Experiment and Optimization”, in Proceedings of ISMB 15, Kitakyushu, Japan, 2016, 819–825.
  • [5] J. Schmied and J.C. Pradetto, “Behaviour of a One Ton Rotor being Dropped into Auxiliary Bearings”, in Proceedings of ISMB 3, Zürich, Schweiz, 1992, pp. 145–156.
  • [6] Z. Yili and Z. Yongchun, “Dynamic Responses of Rotor Drops onto Auxiliary Bearing with the Support of Metal Rubber Ring,” Open Mech, Eng. J., vol. 9, no. 1, pp. 1057–1061, 2015, doi: 10.2174/1874155X01509011057.
  • [7] A. Bormann, Elastomerringe zur Schwingungsberuhigung in der Rotordynamik: Theorie, Messungen und optimierte Auslegung. Dissertation. Düsseldorf: VDI-Verl., 2005.
  • [8] M. Orth and R. Nordmann, “ANEAS: A Modeling Tool for Nonlinear Analysis of Active Magnetic Bearing Systems,” IFAC Proceedings Volumes, vol. 35, no. 2, pp. 811–816, 2002, doi: 10.1016/S1474-6670(17)34039-9.
  • [9] V.L. Popov, Contact Mechanics and Friction: Physical Principles and Applications. Berlin, Heidelberg: Springer, 2017.
  • [10] E.P. Gargiulo Jr., “A simple way to estimate bearing stiffness,” Machine Design, vol. 52, no. 17, pp. 107–110, 1980.
  • [11] K.H. Hunt and F.R.E. Crossley, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” J. Appl. Mech., vol. 42, no. 2, p. 440, 1975, doi: 10.1115/1.3423596.
  • [12] M.C. Marinack, R.E. Musgrave, and C.F. Higgs, “Experimental Investigations on the Coefficient of Restitution of Single Particles,” Tribol. Trans., vol. 56, no. 4, pp. 572–580, 2013, doi: 10.1080/10402004.2012.748233.
  • [13] R.J. Mainstone, “Properties of materials at high rates of straining or loading,” Mat. Constr., vol. 8, no. 2, pp. 102–116, 1975, doi: 10.1007/BF02476328.
  • [14] H. Wittel, D. Muhs, D. Jannasch, and J. Voßiek, “Wälzlager und Wälzlagerungen,” in Roloff/Matek Maschinenelemente, H. Wittel, D. Muhs, D. Jannasch, and J. Voßiek, Eds., Wiesbaden: Vieweg+Teubner Verlag, 2009, pp. 475–525.
  • [15] J. M. Gouws, “Investigation into backup bearing life using delevitation severity indicators,” North-West University, Potchefstroom, South Africa, 2016.
  • [16] G. Sun, “Auxiliary Bearing Life Prediction Using Hertzian Contact Bearing Model,” J. Appl. Mech., vol. 128, no. 2, p. 203, 2006, doi: 10.1115/1.2159036.
  • [17] T. Ishii and R. G. Kirk, “Transient Response Technique Applied to Active Magnetic Bearing Machinery During Rotor Drop,” J. Vib. Acoust., vol. 118, no. 2, pp. 154–163, 1996, doi: 10.1115/1.2889643.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56b8b899-2a1e-48d1-af6d-a323b5b8af92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.