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oCena niezaWodnośCi tuRbin WiatRoWyCh za pomoCą sieCi bayesa 
z uWzględnieniem WpłyWu pRędkośCi WiatRu

The reliability of wind turbine is of great importance for the availability and economical efficiency of wind power system. In this 
article, a reliability model for wind turbine is built with Bayesian network (BN), in which the influence of wind speed is considered. 
Causal logic method (CLM) is presented for qualitative modeling, which combines the merits of fault tree in handling techni-
cal aspects and the strength of BN in dealing with environmental factors and uncertainty. A novel adjustment method based on 
expectation is proposed for quantitative calculation, by which historical data and expert judgment are integrated to describe the 
uncertainty in the prior probability distributions. An approximate inference algorithm combining with dynamic discretization of 
continuous variables is adopted to obtain the reliability index of wind turbine and its elements. A case study is given to illustrate 
the proposed method, and the results indicate that wind speed is an important factor for the reliability of wind turbine.

Keywords: Bayesian network, wind turbine, reliability assessment, wind speed.

Niezawodność turbiny wiatrowej ma ogromne znaczenie dla gotowości i efektywności ekonomicznej instalacji wiatrowej. W ni-
niejszym artykule zbudowano, w oparciu o sieci Bayesa (BN), model niezawodności turbiny wiatrowej uwzględniający wpływ 
prędkości wiatru. Przedstawiono Metodę Logiki Przyczynowości (Causal Logic Method, CLM), służącą do modelowania jako-
ściowego, która łączy zalety drzewa błędów w odniesieniu do aspektów technicznych z atutami BN w odniesieniu do czynników 
środowiskowych i niepewności. Do kalkulacji ilościowych zaproponowano nową metodę dopasowania opartą  na oczekiwaniach, 
w której dane z eksploatacji i opinie ekspertów łącznie pozwalają opisać niepewność rozkładów prawdopodobieństwa a priori. 
Wskaźnik niezawodności turbiny wiatrowej i jej elementów otrzymano posługując się algorytmem wnioskowania przybliżonego 
w połączeniu z dynamiczną dyskretyzacją zmiennych ciągłych. Dla zilustrowania proponowanej metody przedstawiono studium 
przypadku, którego wyniki wskazują, że prędkość wiatru jest ważnym czynnikiem niezawodności turbiny wiatrowej.

Słowa kluczowe: Sieć Bayesa, turbina wiatrowa, ocena niezawodności, szybkość wiatru
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1. Introduction
Wind energy is a kind of clean and renewable energy. Its installed 

capacity has grown rapidly around the world in recent years [7]. In 
China, for instance, it has shown a booming growth in wind power 
since 2005, and the installed capacity has increased from 503MW in 
2005 to around 60GM by the end of 2012 [14]. Due to the variability 
of wind, shifting loads and fluctuating energy demands, components 
of wind turbines are susceptible to damage, including gearboxes, 
blades, generators and electrical components, etc [13]. Since wind 
power projects are long-term and capital-intensive, spanning about 
20–25 years, the failures of components will cause excess repair and 
maintenance costs, thereby reducing the power generation [12]. For 
instance, for a variety of reasons, the average utilization time of wind 
turbines with full capacity in China is only 1920 hours in 2011, which 
is significantly lower than 2200 hours as planned.

With the increasing number of wind turbines and wind farms, the 
importance of their reliability and availability has attracted great atten-

tion. Negra et al. [20] summarized the factors that affect the reliability 
of wind power system, including wind turbine performance, and some 
reliability evaluation indices were also presented. Considering wind 
turbine as a two-state system, Manco et al. [16] proposed a reliability 
model with Markovian approach. Fazio et al. [8] adopted universal 
generating function (UGF) to build the reliability model of wind tur-
bine, in which wind speed, energy conversion and failure characteris-
tics were considered. Guo et al. [10] applied three-parameter Weibull 
distribution to describe the reliability growth of wind turbines with 
incomplete failure data. But up to now, the research on reliability as-
sessment for wind turbines is still very limited [9].

Wind turbine is a kind of multi-component complicated system. 
The behaviors of the components in such a system include failure 
priority, dependent failures and interactions, etc [15]. In practice, the 
interactions among the assemblies of wind turbines are quite compli-
cated, thus it can not simply be regarded as a series blocks of assem-
blies [2]. Furthermore, the reliability of wind turbine is also affected 
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by various environmental factors, such as wind speed, temperature, 
humidity, location of wind farm [30]. By analyzing failure data and 
wind speed data, Tavner et al. [27] concluded that high wind speeds 
reduce wind turbine reliability. Su et al. [25] analyzed the correlation 
between failure rate of wind turbine and wind speed by time series 
approach. They ascribed a periodicity in failure rates of wind turbines 
to the effect of wind speed, but didn’t go further to investigate how 
to take wind speed into consideration when evaluating the reliabil-
ity. The interaction among the components and the influence of wind 
speed greatly increase the difficulties in system reliability assessment 
with traditional reliability methods.

Bayesian network (BN) has the ability to depict the uncertainty 
and interactions among the assemblies. It also provides the possibility 
to combine different sources of information together, such as expert 
knowledge, environmental and human factors. Most associated litera-
tures focused on the learning and inference algorithms related with 
BN. Nonetheless, the application of BN in reliability has aroused great 
interest among researchers in the past few years [28]. Bobbio et al [3] 
showed how to map fault trees into BN, and reliability analysis for a 
multiprocessor system was also completed with BN. Compared with 
fault tree method, some restrictive assumptions in BN can be removed, 
and various dependencies among components can also be expressed 
efficiently. Marquez et al. [17] proposed a hybrid BN framework to 
analyze dynamic fault tree, meanwhile, the failure distributions of 
static and dynamic logic gates were obtained by using an approximate 
inference algorithm involving dynamic discretization of continuous 
variables. Boudali et al. [5] presented a discrete-time BN framework 
to fulfill the reliability analysis for a dynamic system. They also pro-
posed a continuous BN framework, which considered not only the 
combination of failure events, but also the sequence ordering of the 
failure [4]. Sørensen [23] described the degradation process before 
failure by pre-posterior Bayesian, and the influence of uncertainty on 
degradation, maintenance cost and whole life cycle cost were ana-
lyzed in order to optimize the operation and maintenance. 

In this paper, BN is adopted to build reliability model of wind 
turbine, and wind speed and the uncertainty in reliability parameters 
are also taken into consideration. A casual logic method (CLM) is pro-
posed to build the qualitative model, and a novel method is presented 
to handle the uncertainty of parameters. The case study indicated that 
by considering the influence of wind speed, the reliability assessment 
results of wind turbine are more practical.

The remainder of this paper is organized as follows. Section 2 
gives a brief introduction of BN, and the procedure to build a reli-
ability model based on BN is also provided. CLM for qualitative 
modeling is presented in Section 3. In Section 4, a novel adjustment 
method based on expectation is proposed to adjust prior probability 
distribution, and an approximate inference algorithm combining with 
dynamic discretization is adopted to obtain conditional probability 
distributions. In Section 5, a case study for wind turbine reliability 
assessment considering the influence of wind speed is provided to il-
lustrate the feasibility of the proposed approach. In Section 6, conclu-
sions and further studies are offered.

2. Reliability modeling based on Bayesian network

2.1. Introduction to Bayesian network

Bayesian network (BN) is also known as casual network, or prob-
abilistic dependence graph [3]. It is a graphical network established 
on the basis of well-defined probabilistic reasoning, and it has strong 
ability to deal with uncertainty and dependence [6]. Based on the ob-
servations and other prior information, the probability distribution of 
random variables can be calculated by BN. 

In general, the definition of a BN can be divided into two parts: 
qualitative and quantitative [18]. The qualitative part is described by 

a directed acyclic graph (DAG), in which the nodes represent system 
variables X={x1, x2, …, xn}, and directed arcs symbolize the causal or 
influential relationships between variables. Fig. 1 gives a simple BN 
with nodes {x1, x2, x3, x4}, in which only the qualitative part is shown. 
Nodes x1 and x2 are the parents of node x3, and node x3 is the parent 
of node x4. The direct arcs between nodes x1 and x3 as well as nodes 
x2 and x3 mean that node x3 is affected by nodes x1 and x2, while x1 
and x2 are independent. Similarly, node x4 is dependent on node x3. 
The quantitative part is conditional probability distributions (CPD), 
p(xi|pa(xi)), which define the probability relationship among the nodes 
by their parent nodes pa(xi). Those nodes without parents are called 
root nodes, and their CPD can be simply indicated as p(xi|ϕ)=p(xi),  
which is also called prior probability distributions. The main feature 
of BN is representing a joint probability distribution by factoriza-
tion of variables based on conditional independence, which can be 
expressed as 

 p x x x p x pa xn i i
i

n
( , , , ) ( | ( ))1 2

1
 =

=
∏  (1)

According to the separation of conditional independence, the dis-
tribution of joint probability can be divided into some simple prob-

ability distributions. In this way, the complexity of the model is re-
duced, and the inference efficiency can be improved obviously. Take 
Fig. 1 as an example, its joint probability distribution is equivalent to 

 1 2 3 4 1 2 3 1 2 4 3( , , , ) ( ) ( ) ( | , ) ( | )p x x x x p x p x p x x x p x x=  (1a)

The marginal probability distribution of a node can be obtained 
by joint probability distribution. Assuming that the nodes in Fig. 1 are 
discrete, the marginal probability distribution of x4 is denoted as

1 2 3 1 2 3
4 1 2 3 4 1 2 3 1 2 4 3

, , , ,
( ) ( , , , ) ( ) ( ) ( | , ) ( )

x x x x x x
p x p x x x x p x p x p x x x p x x= =∑ ∑  (1b)

2.2. Modeling process 

In this study, we are interested in the reliability assessment of 
wind turbines based on BN, and the influence of wind speed is also 
considered. Roughly, there are four steps involved in the modeling, 
as seen in Fig. 2.
Step 1: System definition. Basic events and logic gates are deter-

mined by classical reliability analysis methods, including FTA 
and RBD. Afterwards the environmental factors, such as wind 
speed, are introduced into the model on the basis of the require-
ment of reliability assessment. Meanwhile, continuous and dis-
crete variables are also defined at this stage.

Step 2: Qualitative modeling. CLM is adopted to establish qualita-
tive model, i.e., definition of DAG. In order to make the inference 

Fig. 1. An example BN with nodes {x1, x2, x3, x4}

Fig. 2. Flow chart of reliability assessment
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effective, intermediate nodes are necessary when a node has more 
than three parents.

Step 3: Quantitative modeling. It includes the setting of prior prob-
ability distributions and CPD. Prior probability distributions are 
obtained based on historical data and subjective judgment. The 
root nodes which correspond to the assemblies or subsystems of 
wind turbine are characterized by their prior probability density 
functions. A novel approach is proposed to adjust the parameters 
of prior distributions. All non-root nodes, i.e. logic gates and de-
pendent components, are characterized by their CPD.

Step 4: Model verification. Reliability evaluation and sensitivity 
analysis are included in this step. In this article, an approximate 
inference algorithm combining with dynamic discretization of 
continuous variables is adopted to obtain TTF distribution of 
wind turbine. The details can be found in Ref. [21]. The result is 
also compared with the one that doesn’t consider the influence of 
wind speed and the uncertainty of parameters. Sensitivity analy-
sis is conducted to illustrate how the reliability of wind turbine 
changes with the variations of average wind speed.

3. Qualitative modeling 

Ref. [22] presented a hybrid causal logic method (HCLM), in 
which BN was integrated into event sequence diagrams or fault trees. 
Inspired by HCLM, we present a casual logic method (CLM) to guide 
the reliability modeling of wind turbine based on BN. Firstly the logic 
relation of fault tree is transformed into BN, then wind speed is added 
into BN regarded as a common environmental factor. Finally, the BN 
model is adjusted again for considering the uncertainty of parameters 
in prior probability distribution. Compared with HCLM, CLM guar-
antees that all the basic events are represented only once, which can 
reduce the complexity of the model. Meanwhile, a new algorithm 
of combination of fault trees and BNs is dispensable. An example is 
showed in Fig. 3 to illustrate CLM in detail.

As seen in Fig. 3a, it is assumed that a fault tree of wind turbine 
consists of three basic events x1, x2, x3 with an AND gate and an OR 
gate respectively. Either event x1 or x2 failure will lead to the failure 
of OR gate’s output. As for AND gate, top event x4 fails only when 
all of its input events fail. Therefore, the cut sets are {x1, x3}, {x2, x3}, 
and {x1, x2, x3}, which are used for defining all the fault modes of the 
system. The fault tree can be mapped into BN, shown as Fig. 3b. The 
basic events in fault tree equal to the root nodes in BN. It needs to be 
pointed out that if the basic events appear more than once, one cor-
responding node in BN is enough. Similarly, each logic gate can be 
represented by a corresponding node in BN. Nodes are connected by 
directed arcs in BN just as corresponding gates in fault tree. 

In practical applications, the reliability of wind turbine is also af-
fected by wind speed, which is difficult to be handled quantitatively. 
In this paper, the influence of wind speed is expressed by the change 
of components’ life-lengths. When wind speed is not taken into con-
sideration, the life-lengths of components are independent. But when 
components are exposed to some common environment, the correla-

tion among their life-lengths is as follows: a tough environment leads 
to reduced life-lengths for all components, whereas a gentle environ-
ment implies that the life-lengths of the components are increased. 
Thus, let V represent wind speed, and make links between node V 
and each component to express the influence of wind speed on them. 
The qualitative part of BN model considering wind speed influence is 
built, as illustrated in Fig. 3c.

Furthermore, the uncertainty of parameters is also considered in 
the BN model. In general, the TTF distributions of basic events are as-
sumed to be probability distributions with constant parameters. But in 
this study, parameters are considered as random variables, and mod-
eled using probability distributions. Nodes L1, L2, L3 are created to 
describe the probability distribution of parameters, and are added as 
the parents of corresponding nodes, as shown in Fig. 3d.

The qualitative reliability model with BN can be built according 
to the steps above. The corresponding BN model can describe the 
structure of wind turbine, the interactions among components, and the 
influence of environmental factors on system reliability. 

4. Quantitative calculation

In this study, continuous nodes are used to represent TTF of basic 
events and logic gates, and discrete nodes are used to describe the 
states of wind turbine and its subsystems at a particular point in time. 
Prior probability distributions and CPD are needed to evaluate wind 
turbine reliability. If sufficient historical data are available, prior prob-
ability distributions can be obtained. But in practice, failure data are 
usually limited. Therefore, the prior probability distributions are usu-
ally obtained according to the judgment of experts’ knowledge and 
experience. A novel approach is proposed in Section 4.2 to adjust pa-
rameters of prior probability distributions, which can combine his-
torical data and expert judgment. CPD for TTF τ of fault tree logic 
gates, f t( |pa( ))τ , needs to be calculated, where τ is a function of cor-
responding input components’ TTF, namely τ ρ τ= (pa( )) .

Considering the reliability model consists of both 
discrete and continuous nodes, and after adjustment 
the prior probability distributions are non-Gaussian 
distributions, an approximate inference algorithm 
combining with dynamic discretization of all con-
tinuous variables are adopted to generate TTF dis-
tributions of wind turbine and its subsystems.  Thus 
the reliability of wind turbine at any mission time 
can be derived.

4.1.  Dynamic discretization and approximate 
inference

Inference is carried out using a standard BN propagation algo-
rithm. Considering the reliability model of wind turbine includes both 
discrete and continuous nodes with non-Gaussian distributions, exact 
inference seems troublesome. An approach is applied in this paper, by 
which the ranges of all continuous variables are dynamically discre-
tized, and CPD at each discretization step is approximated by using a 
weighted uniform density function [21]. 

The dynamic discretization consists of two parts: 1) searching an 
optimal partition set Ψ={w1, w2, …, wn} in range of variables; 2) opti-

mizing the values for the discretized probability density function 
~

( )f t , 
which are defined as a piecewise constant function on the partitioning 
intervals.

Different from the static discretization splitting the range evenly, 
the dynamic discretization searches the variable range for most ac-
curate specification of high-density regions. At each stage in the itera-
tive process, a candidate discretization, Ψ={w1, w2, …, wn}, is judged 
whether the entropy error is below a given threshold. If not, repeat the 
process until at an acceptable degree. 

Fig. 3. CLM framework: a) Fault trees of an example; b) Mapping fault trees to BN; c) Components 
affected by wind speed; d) Uncertainty of prior probability distributions.
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The approximate inference algorithm uses a weighted uniform 
density function to approximate the conditional density functions af-
ter each dynamic discretization. Here is a case with only two parents 
to illustrate the approximate inference algorithm:

Assume system S has two parent nodes A and B. The TTF of S, 1) 
A, B are tA, tB, tS, respectively. tS can be expressed by its input 
nodes, namely tS =ρ(tA, tB).
Suppose the variables have partition sets Ψ2) A, ΨB. For each pair 
of interval in the respective sets ΨA and ΨB, such as an interval 
(a1, a2) in ΨA  and  (b1, b2) in ΨB, the maximum m and mini-
mum l for each set of values ρ(a1, b1), ρ(a1, b2), ρ(a2, b1), ρ(a2, 
b2) are calculated with the approach respectively.
If the number of such kind of interval is I, then a uniform prob-3) 
ability density mass U(li, mi) is generated in interval (li, mi) 
over the range of tS, for i∈ I. Assuming that partition set 
Ψs={w1, w2, …, wn}, then the conditional density function of 
nodes tS in the partitioning interval wk can be defined as 

 ( ) ( ; , )s k i ip t w U t l m∈  (2)

where ( )s kp t w∈  represents the fraction of uniform mass U(t; li, mi) 
corresponding to the interval wk

 p t w
U t l u dt   if   w l ,m  

otherwise
s k

i iw k i i
k( )

( ; , )
∈ =







∩ ≠∫
0

( ) φ
 (3)

By iteratively updating the partitioning intervals using dynamic 
discretization, the accurate approximations of CPD are obtained, and 
the input variables are not limited to exponential or Gaussian fami-
lies. 

4.2. Parameter uncertainty of prior probability distribution

In this section, a novel method called adjustment method based 
on expectation is proposed to deal with the uncertainty of parameters 
in prior probability distributions. Generally, the expected values of 
TTF distributions can show the average life-lengths of components. 
It is simple and intuitive to judge the fluctuating ranges of average 
life lengths, while it is hard to decide the parameters of the distribu-
tion functions. Therefore, the expected values of TTF distributions 
together with regulation factors are considered to achieve uncertainty 
of prior probability distributions. 

Suppose the TTF distribution of a node in BN is f with param-
eters K={K1, K2, …, Kn}, i=1, 2, …, n, which can be expressed as  
f(t|K1, K2, …, Kn) with t≥0. Its expectation can be calculated by

 1 2 1 2( , ,... ) ( , ,... )n nET t f t K K K dt g K K K= ⋅ =∫  (4)

Now the parameters K={K1, K2, …, Kn} are obtained based on 
historical data, namely K1=k1, K2=k2, …, Kn=kn. The distribution with 
constant parameters can be written as f (t|K1=k1, K2=k2, …, Kn=kn), 
and its expected value can be calculated by Eq. (4)

   1 1 2 2 n n, 1 2( , , ) ( , ,..., )nE t K k K k K k g k k k= = = = , (5)

Let the regulation factors of parameters K={K1, K2, …, Kn} be 
θ={θ1, θ2, …, θn}, i=1, 2, …, n. The uncertainty of parameter Ki is 
dependent on regulation factors θi, which belongs to [0, 1]. The bigger 
θi is, the less convincible fitting distributions will be. Here, we as-
sume that the expectation obeys triangular distribution as below after 
expert’s adjustment. 

 g k k K k Triangle g g gi n i i( , ,..., ..., ) ~ (( ) ,( ) , )1 2 1 1, − +θ θ , (6)

where g is short for the expected value g(k1, k2,…, kn) in Eq. (5); (1− θi)
g and (1+ θi)g represent the lower limit and upper limit of triangular 
distribution, respectively.

The distribution for parameters can be generated from Eq. (6), 
shown as

K g g g g gi i i~ (min( (( ) ), (( ) )),max( ((triangular − − −− + −1 1 11 1 1θ θ θ ii ig g g g g) ), (( ) )), ( ))− −+1 11 θ ,
(7)

where g−1 is the inverse function of g(k1, k2, …, Ki, …, kn) in Eq. (6).
Here is an example to illustrate the method. Suppose the TTF dis-

tribution of component A is exponential distribution with k = 1/1000, 
i.e. Exp(1/1000). The regulation factor given by expert is 0.2, then 
we can obtain that k ~ triangular (1/1200, 1/800, 1/1000) according to 
Eqs. (4) – (7). The prior probability distribution of component A after 
adjustment is shown as Fig. 4:

4.3. CPD for Boolean constructs 

The dynamic discretization algorithm, together with the approxi-
mation approach, allows us to estimate the CPD for the fault tree con-
structs automatically. 

The TTF of Boolean constructs in simple fault trees are defined 
by the input components of the construct, i.e., τ=g(pa(τ)). Let ti (i=1, 
2, …, n) denote the TTF of the ith parent node.

The AND gate means that only if all the input components fail, the 
output of the AND gate will fail. Suppose TTF of AND gate is tAND , 

and according to the definition of  AND gate, its failure probability in 
time interval (0, t] can be given by

 p t t p t t t t p m t tn
i

i( ) ( , , ) ( )AND ax{ }≤ = ≤ ≤ = ≤1  , (8)

where the TTF of AND gate, tAND , is a random variable defined by its 
corresponding input nodes’ TTF, namely t m t

i
iAND ax{ }= .  

As for OR gate, it means that if at least one input component fails, 
the output of the OR gate will fail. Similarly, the failure probability 
of tOR , namely the TTF of OR gate, in time interval (0, t] can be 
formulated as

 p t t p t t t t p t tn
i

i( ) ( , , ) (min )OR { }≤ = − > > = ≤1 1   (9)

where the TTF of OR gate tOR  is a random variable defined by its 

parents, namely min{ }OR i
i

t t= .

Fig. 4. An example for adjustment of prior probability distribution
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5. Case study

5.1. Description of wind turbine 

Wind turbine is a complicated system which is composed of sev-
eral subassemblies. Fig. 5 shows the main subassemblies in a typical 
geared generator wind turbine [1]. Although all the subassemblies are 
indispensable both in function and reliability, for simplification here 
we only focus on some important subassemblies, including gearbox, 
blades, generator, electrical subsystem, converter, yaw assembly, pitch 
assembly, brake assembly, and hydraulic assembly. Brake assembly is 
parallel connected by air brake and mechanical brake. From the view 
of reliability, the above assemblies can be considered in series, and 
the reliability block diagram is shown in Fig. 6. Safety subsystem is 
composed of yaw assembly, pitch assembly, brake assembly, and hy-
draulic assembly. It is of great importance for the operation, reliability 
and safety of wind turbine. Fig. 7 illustrates a fault tree, in which the 
basic events represent the failure of subsystems or assemblies, and 
the failure of wind turbine is the top event. The symbols for the basic 
events are shown in Table 1.

Generally, the wind turbine could continue to work when safety 
subsystem fails, but in a suboptimal situation [1]. Therefore, it’s not 
always practical to consider safety subsystem as a series relationship. 
Considering that classical reliability methods are not skillful in deal-
ing with the environmental factor, in this article BN is applied to build 
the reliability model, and study the influence of wind speed on the 
reliability.

5.2. Reliability model of wind turbine based on BN

5.2.1. Qualitative modeling for reliability of wind turbine based 
on BN 

On the basis of fault tree in Fig. 7 and the function of safety sub-
system, the BN model which ignores the safety subsystem is built, as 
show in Fig. 8a. The corresponding BN model of the safety subsystem 
is as shown in Fig. 8b. The influence of safety subsystem on wind 
turbine reliability is mainly reflected on the protection of blades. The 
life-lengths of blades are affected by the state of safety subsystem. 
Hence, Figs. 8a and 8b can be combined by the node “on?” which 
represents the state of safety subsystem, seen in Fig. 8c. 

After mapping the fault tree into BN, the influence of wind speed 
and the uncertainty of parameter are considered by using CLM. The 
range of wind speed has diverse influence on life-lengths of subsys-
tems and assemblies. Therefore, node “v>v0” is added to divide wind 
speed interval, and it is connected to all subsystems and assemblies. As 
for uncertainty of parameters, only one parameter in each prior prob-
ability distribution is adjusted in this study, which can be described by 
nodes Li, where i =1 to 10. The qualitative reliability model of wind 
turbine based on BN is established, as shown in Fig. 9.

5.2.2. Definition of TTF distributions 

Based on the failure data recorded in Windstas for the wind farms 
in Denmark and Germany during 1994 to 2004, some statistic analy-
ses for the life data of wind turbines have been done in Refs. [11, 
24, 25]. The TTF distributions of corresponding subsystems and as-
semblies are extracted, as presented in Tables 2 and 3, respectively. 
When the wind speed is larger than cut-out speed (in this case it is 20 
m/s), the prior probability distributions of subsystems and assemblies 
are different. Ref. [26] analyzed which subsystem or assembly’s reli-
ability is greatly affected by wind speed. The result showed that the 
generator is the greatest effect, with yaw assembly and pitch assembly 
closely behind, whereas mechanical brake, hydraulic assembly, air 
brake, gearbox, blades are affected not so remarkable. According to 

Fig.5. Structure of wind turbine

Fig. 6. Reliability block diagram of wind turbine

Blade

HydraulicYaw

GearboxGenerator ElectricalConverter

Pitch
Mechaniacl 

Brake

Air Brake

Fig. 7. A fault tree of wind turbine

Table 1. Symbols for basic events

Symbol Basic event

g Failure of generator 

gB Failure of gear Box 

B  Failure of Blade 

eS Failure of electrical Subsystem

cS Failure of converter Subsystem 

SS Failure of Safety Subsystem

Pa Failure of Pitch assembly 

Ba Failure of Brake assembly 

ha Failure of hydraulic assembly 

ya Failure of yaw assembly

aB Failure of air Brake

MB Failure of Mechanical Brake 

Tower

Yaw Motor

Blades

Yaw Drive

Brake

Rotor

Pitch

Gear Box

Generator
Electrical

Converter
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that conclusion, the prior probability distributions judged by experts 
are shown in column 3 of Table 2.

From Tables 2 and 3, it can be found that the TTF distributions of 
the subsystems or assemblies obey Weibull(α, β), Exp(1/λ) and N(μ, 
σ2), respectively. To simplify the calculation, we consider uncertainty 
for only one parameter in each distribution, i.e., α in Weibull distribu-
tion, λ in exponential distribution and μ in normal distribution. 

5.2.3. Reliability assessment of wind turbine 

The reliability model is built with Agenarisk© software, and after 
running for 25 iterations the TTF distributions of wind turbine and 
its subsystems are obtained. If the wind speed and the uncertainty of 
parameters are not considered, the reliability of wind turbine at 1000h 
turns out to be 96.21%, which is quite closed to the result 96.17% in 
Ref. [11]. Thus, the modeling method and calculating algorithm pro-
posed in this study is with high accuracy. 

Now we consider the influence of wind speed and parameters’ 
uncertainty. Assuming that the wind speed obeys Weibull (14, 1.94) 
and all the regulation factors are set to 0.1. The TTF distributions of 
subsystems and wind turbine are shown as Fig. 10. In order to make 
the figure concise, some nodes are hidden. Fig. 11 presents a clear 
image of TTF distribution of the wind turbine. From Figs. 10 and 
11, we can learn that the reliability of the wind turbine at 1000h is 
95.18%, and the mean time to failure (MTTF) is 13944h. Obviously, 
the wind speed and parameters’ uncertainty have greatly decreased 
the reliability. 

Meanwhile, from Fig. 11 we can find that firstly the TTF distri-
bution increases within a relatively short period from 0h to around 
3000h, and then it keeps declining, which is consistent with the fact 
that maintenance is not taken into account in this study. It implies that 
if maintenance is ignored, the TTF is not long enough to meet high 
availability requirement for wind turbines. Given the target reliability, 
the corresponding time can be obtained according to TTF distribution. 
That provides a theoretical foundation for the decision-making of pre-
ventive maintenance. In the engineering practice, the life expectancy 
of wind turbine is about 20 years, and the required technical avail-
ability of wind turbines is quite high [29]. Therefore, good reliability 
design and maintenance management are of crucial importance to the 
normal operation and economic benefit of wind turbines.

Based on the TTF distribution of wind turbine, the reliability at 
different points in time can be calculated, and the reliability-to-time 
curve is drawn, as shown in Fig. 12. In the same manner, reliability-
to-time curve without considering the influence of wind speed is also 
illustrated. Both the curves have the same changing trends, which de-
crease over time. Compared with the curve not considering the influ-
ence of wind speed, the curve considering the influence of wind speed 
is less reliable, and the gap between them increases with time. For ex-
ample, at 0h the reliability is 100% for both curves, the gap increases 
to 5.85% at 10000h. Therefore, the influence of wind speed on wind 
turbine reliability should not be ignored.

Fig. 8. Mapping fault tree of wind turbine into BN: a) BN model for wind turbine without consideration of safety subsystem; b) BN model for safety subsystem; c) 
BN model for entire wind turbine system

Fig. 9. Qualitative reliability model for wind turbine

Table 2. TTF distributions of subsystems and assemblies

nodes TTF distribution when 
0<v≤20(h)

TTF distribution when 
v>20(h)

gearbox Weibull(12300,1.05) Weibull(12300,1.05)

generator Weibull(76000, 1.2) Weibull(7600, 1.2)

electrical subsystem Weibull(35000, 1.5) Weibull(35000, 1.5)

converter subsystem exp(1/45000) exp(1/45000)

yaw assemble exp(1/65000) exp(1/8125)

Pitch assemble n(84534,506) n(14089,506)

hydraulic assemble Weibull(66000, 1.3) Weibull(33000, 1.3)

air brake exp(1/100000) exp(9/500000)

Mechanical brake exp(1/120000) exp(1/30000)

Table 3. TTF distributions of blades

TTF distribution 
(h)

State of safety 
subsystem

(Safe or Failure)

Wind speed
(m/s)

n(42000, 663) Safe 0<v≤20

Blade n(42000, 663) Safe >20

n(42000, 663) Failure 0<v≤20

n(28000, 663) Failure >20
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β.
 
Keeping β fixed and by changing α, the rel-

evance between average wind speed and wind 
turbine’s reliability can be analyzed. Running the 
models under different wind speeds for 25 itera-
tions respectively, the reliabilities at 1000h are 
evaluated, as shown in Fig. 13. In addition, the 
corresponding reliabilities under the assumption 
that the safety subsystem is failed are also cal-
culated, shown also in Fig. 13. Obviously, they 
have similar variation trends. But if the safety 
subsystem fails the reliability of wind turbine 
will be lower, which demonstrates the impor-
tance of safety subsystem in protecting the blades 
and the entire device. Fig. 13 can also show that 
the gap between the two estimates increases with 
the values of wind speed. Both Fig. 12 and Fig. 
13 illustrate the influence of wind speed on wind 
turbine’s reliability. It’s also worth pointing out 
that this model can be used for wind turbines in 

different areas with varied wind conditions as long as the prior prob-
ability distribution of wind speed is obtained.

6. Conclusion and further study

In this article, a reliability model of wind turbine is built based 
on BN, in which the influence of wind speed is also taken into con-
sideration. The CLM is proposed to direct qualitative modeling. The 
fault trees are mapped into BN, then the wind speed and parameters’ 
uncertainty are considered. A novel adjustment method based on ex-
pectation is presented to modify the prior probability distributions. An 
approximate inference algorithm involving dynamic discretization is 
adopted to calculate the TTF distribution of wind turbine. Therefore 
the reliability of wind turbine can be evaluated. The case study shows 
that the approach proposed in this article is suitable for reliability as-
sessment of wind turbines. Additionally, the TTF distribution can pro-
vide a reasonable guide for the maintenance decision of wind farms.

In this study, we focus only on reliability assessment of wind tur-
bine based on BN. While in practice, maintenance and availability are 
also very important topics. Hence, we intend to carry out further stud-
ies on maintenance decision-making and availability assessment for 
wind turbines or wind farms based on the theory of Bayesian network 
in the near future.

Fig. 10. TTF distributions of wind turbine and its subsystems

Fig. 11. TTF distribution of wind turbine

Fig. 13. Reliability of wind turbine varied with wind speed

Fig. 12. Reliability-to-time curves of wind turbine
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