PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An invariance principle for weakly dependent stationary general models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to refine a weak invariance principle for stationary sequences given by Doukhan and Louhichi [10]. Since our conditions are not causal, our assumptions need to be stronger than the mixing and causal 0-weak dependence assumptions used in Dedecker and Doukhan [5]. Here, if moments of order greater than 2 exist, a weak invariance principle and convergence rates in the CLT are obtained; Doukhan and Louhichi [10] assumed the existence of moments with order greater than 4. Besides the η and к-weak dependence conditions used previously, we introduce a weaker one, λ, which fits the Bernoulli shifts with dependent inputs.
Rocznik
Strony
45--73
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Laboratoire de Statistique, CREST, France, Timbre J3403, avenue Pierre Larousse 92240, Malakoff, France
  • SAMOS, Statistique Appliquée et Modélisation Stochastique Université Paris 1, Centre Pierre Mendés-France, 90 rue de Tolbiac, F-75634 Paris Cedex 13, France
Bibliografia
  • [1] D. W. K. Andrews, Nonstrong mixing autoregressive processes, J. Appl. Probab. 21 (4) (1984), pp. 930-934.
  • [2] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
  • [3] S. Borovkova, R. Burton, and H. Dehling, Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation, Trans. Amer. Math. Soc. 353 (11) (2001), pp. 4261-4318.
  • [4] A. Bulinski and A. Shashkin, Strong invariance principle for dependent random fields, preprint, 2005.
  • [5] J. Dedecker and P. Doukhan, A new covariance inequality and applications, Stochastic Process. Appl. 106 (1) (2003), pp. 63-80.
  • [6] J. Dedeck er and E. Rio, On the functional central limit theorem for stationary process, Ann. Inst. H. Poincare Probab. Statist. 36 (2000), pp. 1-34.
  • [7] P. Doukhan, Mixing, Lecture Notes in Statist. 85, Springer, New York 1994.
  • [8] P. Doukhan and G. Lang, Rates in the empirical central limit theorem for stationary weakly dependent random fields, Stat. Inference Stoch. Process. 5 (2) (2002), pp. 199-228.
  • [9] P. Doukhan, G. Lang, D. Surgailis, and M.-C. Viano, Functional limit theorem for the empirical process of a class of Bernoulli shifts with long memory, J. Theoret. Probab. 18 (1) (2005), pp. 161-186.
  • [10] P. Dоukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities, Stochastic Process. Appl. 84 (2) (1999), pp. 313-342.
  • [11] P. Doukhan and F. Portal, Principe d’invariance faible pour la fonction de repartition empirique dans un cadre multidimensionnel et mélangeant, Probab. Math. Statist. 8 (1987), pp. 117-132.
  • [12] P. Doukhan, G. Teyssière, and P. Winant, A LARCH(∞) vector valued process, in: Dependence in Probability and Statistics, P. Bertail, P. Doukhan, and P. Soulier (Eds.), Lecture Notes in Statist. 187, Springer, New York 2006.
  • [13] M. Duflo, Algorithmes stochastiques, Math. Appl. (Berlin) 23 (1986).
  • [14] M. I. Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), pp. 739-741.
  • [15] C. C. Heyde, On the central limit theorem and iterated logarithm law for stationary processes, Bull. Austral. Math. Soc. 12 (1975), pp. 1-8.
  • [16] I. A. Ibragimov, A note on the central limit theorem for dependent random variables, Theory Probab. Appl. 20 (1975), pp. 135-141.
  • [17] G. Lang and P. Soulier, Convergence de mesures spectrales aléatoires et applications á des principes d’invariance, Stat. Inference Stoch. Process. 3 (1-2) (2000), pp. 41-51.
  • [18] S. Louhichi, Rates of convergence in the CLT for some weakly dependent random variables, Teor. Veroyatnost i Primenen. 46 (2) (2001), pp. 345-364.
  • [19] S. Louhichi and P. Soulier, Marcinkiewicz-Zygmund strong laws for infinite variance time series, Stat. Inference Stoch. Process. 1 (2) (2000), pp. 31-40.
  • [20] F. Merlèvede, M. Peligrad, and S. Utev, Recent advances in invariance principles for stationary sequences, Probability Surveys 3 (2006), pp. 1-36.
  • [21] C. M. Newman and A. L. Wright, An invariance principle for certain dependent sequences, Ann. Probab. 9 (4) (1981), pp. 671-675.
  • [22] M. Peligrad and S. Utev, Central limit theorem for stationary linear processes, Ann. Probab. (2006).
  • [23] M. Peligrad and S. Utev, Invariance principle for stochastic processes with short memory, IMS Lecture Notes Monogr. Ser. (2006).
  • [24] V. V. Petrov, Limit theorems of probability theory, Oxford Stud. Probab. 4 (1995).
  • [25] L. D. Pitt, Positively correlated normal variables are associated, Ann. Probab. 10 (2) (1982), pp. 496-499.
  • [26] E. Rio, Theorie asymptotique des processus aléatoires faiblement dependants, Math. Appl. (Berlin) 31 (2000).
  • [27] D. Volný, Approximating martingales and the central limit theorem for strictly stationary process, Stochastic Process. Appl. 44 (1993), pp. 41-74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56b84046-3f21-42ca-90b0-bd17d0dc89d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.