PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parallelization of Concise Convolutional Neural Networks for Plant Classification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Monitoring the agricultural field is the key to preventing the spread of disease and handling it quickly. The computer-based automatic monitoring system can meet the needs of large-scale and real-time monitoring. Plant classifiers that can work quickly in computer with limited resources are needed to realize this monitoring system. This study proposes convolutional neural network (CNN) architecture as a plant classifier based on leaf imagery. This architecture was built by parallelizing two concise CNN channels with different filter sizes using the addition operation. GoogleNet, SqueezeNet and MobileNetV2 were used to compare the performance of the proposed architecture. The classification performance of all these architectures was tested using the PlantVillage dataset which consists of 38 classes and 14 plant types. The experimental results indicated that the proposed architecture with a smaller number of parameters achieved nearly the same accuracy as the comparison architectures. In addition, the proposed architecture classified images 5.12 times faster than SqueezeNet, 8.23 times faster than GoogleNet, and 9.4 times faster than MobileNetV2. These findings suggest that when implemented in the agricultural field, the proposed architecture can be a reliable and faster plant classifier with fewer resources.
Rocznik
Strony
61--71
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Doctoral Program, School of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
autor
  • Doctoral Program, School of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
autor
  • Doctoral Program, School of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Doctoral Program, School of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
Bibliografia
  • 1. Abade A., Ferreira P.A., Vidal F.B. 2021. Plant diseases recognition on images using convolutional neural networks: A systematic review. Computers and Electronics in Agriculture, 185(July 2020). DOI: 10.1016/j.compag.2021.106125
  • 2. Aravind K.R., Maheswari P., Raja P., Szczepański C. 2020. Crop disease classification using deep learning approach: an overview and a case study. Deep Learning for Data Analytics, 173–195. DOI: 10.1016/b978-0-12-819764-6.00010-7
  • 3. Awais M., Iqbal M.T.B, Bae S.H. 2021. Revisiting Internal Covariate Shift for Batch Normalization. IEEE Transactions on Neural Networks and Learning Systems, 32(11), 5082–5092. DOI: 10.1109/TNNLS.2020.3026784
  • 4. Bjorck J., Gomes C., Selman B., Weinberger K.Q. 2018. Understanding batch normalization. Advances in Neural Information Processing Systems, 2018-Decem(NeurIPS), 7694–7705.
  • 5. Brahimi M., Kamel B., Moussaoui A. 2017. Deep Learning for Tomato Diseases: Classification and Symptoms Visualization. In Applied Artificial Intelligence. DOI: 10.1080/08839514.2017.1315516
  • 6. Brahimi M. 2018. Deep learning for plants diseases. Springer International Publishing. DOI: 10.1007/978-3-319-90403-0
  • 7. Chouhan S.S., Kaul A., Singh U.P., Jain S. 2018. Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology. IEEE Access, 6(i), 8852–8863. DOI: 10.1109/ACCESS.2018.2800685
  • 8. Elhassouny A., Smarandache F. 2019. Smart mobile application to recognize tomato leaf diseases using Convolutional Neural Networks. 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), 1–4. DOI: 10.1109/ICCSRE.2019.8807737
  • 9. Ferentinos K.P. 2018. Deep learning models for plant disease detection and diagnosis. In Computers and Electronics in Agriculture, 145. DOI: 10.1016/j.compag.2018.01.009
  • 10. Hassan S.M., Maji A.K., Jasiński M., Leonowicz Z., Jasińska E. 2021. Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach. Electronics (Switzerland), 10(12). DOI: 10.3390/electronics10121388
  • 11. Howlader M.R., Habiba U., Faisal R.H., Rahman M.M. 2019. Automatic Recognition of Guava Leaf Diseases using Deep Convolution Neural Network. 2nd International Conference on Electrical, Computer and Communication Engineering, ECCE 2019, 1–5. DOI: 10.1109/ECACE.2019.8679421
  • 12. Hughes D.P., Salathe M. 2015. An open access repository of images on plant health to enable the development of mobile disease diagnostics. http://arxiv.org/abs/1511.08060
  • 13. Iandola F.N., Han S., Moskewicz M.W., Ashraf K., Dally W.J., Keutzer K. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size, 1–13. http://arxiv.org/abs/1602.07360
  • 14. Ioffe S., Szegedy C. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (F. Bach and D. Blei (eds.); PMLR, 37, 448–456). http://proceedings.mlr.press/v37/ioffe15.pdf
  • 15. Kamilaris A., Prenafeta-Boldú F.X. 2018. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147(July 2017), 70–90. DOI: 10.1016/j.compag.2018.02.016
  • 16. Karthik R., Hariharan M., Anand S., Mathikshara P., Johnson A., Menaka R. 2020. Attention embedded residual CNN for disease detection in tomato leaves. Applied Soft Computing Journal, 86, 105933. DOI: 10.1016/j.asoc.2019.105933
  • 17. Kaur S., Pandey S., Goel S. 2018. Semi-automatic leaf disease detection and classification system for soybean culture. IET Image Processing, 12(6), 1038–1048. DOI: 10.1049/iet-ipr.2017.0822
  • 18. Knoll F.J., Czymmek V., Poczihoski S., Holtorf T., Hussmann S. 2018. Improving efficiency of organic farming by using a deep learning classification approach. Computers and Electronics in Agriculture, 153, 347–356. DOI: 10.1016/j.compag.2018.08.032
  • 19. Lajoie-O’Malley A., Bronson K., Burg S.V.D, Klerkx L. 2020. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosystem Services, 45(August), 101183. DOI: 10.1016/j.ecoser.2020.101183
  • 20. Liu Y., Gao G., Zhang Z. 2021. Plant disease detection based on lightweight CNN model. 2021 4th International Conference on Information and Computer Technologies (ICICT), 64–68. DOI: 10.1109/ICICT52872.2021.00018
  • 21. Lu J., Hu J., Zhao G., Mei F., Zhang C. 2017. An Infield Automatic Wheat Disease Diagnosis System. In Computers and Electronics in Agriculture, 142. DOI: 10.1016/j.compag.2017.09.012
  • 22. Luna R.G.D., Dadios E.P., Bandala A.A. 2019. Automated Image Capturing System for Deep Learning-based Tomato Plant Leaf Disease Detection and Recognition. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2018-Octob(October), 1414–1419. DOI: 10.1109/TENCON.2018.8650088
  • 23. Ma J., Du K., Zheng F., Zhang L., Gong Z., Sun Z. 2018. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Computers and Electronics in Agriculture, 154, 18–24. DOI: 10.1016/j.compag.2018.08.048
  • 24. Maeda-Gutiérrez V., Galván-Tejada C.E., Zanella-Calzada L.A., Celaya-Padilla J.M., Galván- Tejada J.I., Gamboa-Rosales H., Luna-García H., Magallanes-Quintanar R., Guerrero-Méndez C.A., Olvera-Olvera C.A. 2020. Comparison of convolutional neural network architectures for classification of tomato plant diseases. In Applied Sciences (Switzerland), 10(4). DOI: 10.3390/app10041245
  • 25. McCool C., Perez T., Upcroft B. 2017. Mixtures of Lightweight Deep Convolutional Neural Networks: Applied to Agricultural Robotics. IEEE Robotics and Automation Letters, 2(3), 1344–1351. DOI: 10.1109/LRA.2017.2667039
  • 26. Mohanty S.P., Hughes D.P., Salathé M. 2016. Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7(September), 1–10. DOI: 10.3389/fpls.2016.01419
  • 27. Mokhtar U., Ali M.A.S., Hassanien A.E., Hefny H. 2015. Identifying Two of Tomatoes Leaf Viruses Using Support Vector Machine. Advances in Intelligent Systems and Computing, 339, 771–782. DOI: 10.1007/978-81-322-2250-7
  • 28. Najdenovska E., Dutoit F., Tran D., Plummer C., Wallbridge N., Camps C., Raileanu L.E. 2021. Classification of Plant Electrophysiology Signals for Detection of Spider Mites Infestation in Tomatoes. In Applied Sciences, 11(4). DOI: 10.3390/app11041414
  • 29. Rahman C.R., Arko P.S., Ali M.E., Khan M.A.I, Apon S.H., Nowrin F., Wasif A. 2020. Identification and recognition of rice diseases and pests using convolutional neural networks. Biosystems Engineering, 194, 112–120. DOI: 10.1016/j.biosystemseng.2020.03.020
  • 30. Rangarajan A.K., Purushothaman R., Ramesh A. 2018. Tomato crop disease classification using pretrained deep learning algorithm. Procedia Computer Science, 133, 1040–1047. DOI: 10.1016/j.procs.2018.07.070
  • 31. Saleem M.H., Potgieter J., Arif K.M. 2020. Plant Disease Classification: A Comparative Evaluation of Convolutional Neural Networks and Deep Learning Optimizers. In Plants, 9(10). DOI: 10.3390/plants9101319
  • 32. Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L.C. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4510–4520. DOI: 10.1109/CVPR.2018.00474
  • 33. Santurkar S., Tsipras D., Ilyas A., Madry A. 2018. How does batch normalization help optimization? Advances in Neural Information Processing Systems, 2018-Decem(NeurIPS), 2483–2493.
  • 34. Suryawati E., Sustika R., Yuwana R.S., Subekti A., Pardede H.F. 2018. Deep Structured Convolutional Neural Network for Tomato Diseases Detection. 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 385–390. DOI: 10.1109/ICACSIS.2018.8618169
  • 35. Sutaji D., Rosyid H. 2022. Convolutional Neural Network (CNN) Models for Crop Diseases Classification. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(2). DOI: 10.22219/kinetik.v7i2.1443
  • 36. Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D. 2015. Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1002/jctb.4820
  • 37. Too E.C., Yujian L., Njuki S., Yingchun L. 2019. A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161(October 2017), 272–279. DOI: 10.1016/j.compag.2018.03.032
  • 38. Wu Q., Wang F. 2019. Concatenate convolutional neural networks for non-intrusive load monitoring across complex background. Energies, 12(8). DOI: 10.3390/en12081572
  • 39. Wu Y., Wang Z., Shi Y., Hu J. 2020. Enabling On-Device CNN Training by Self-Supervised Instance Filtering and Error Map Pruning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11), 3445–3457. DOI: 10.1109/TCAD.2020.3012216
  • 40. Yamashita R., Nishio M., Do R.K.G., Togashi K. 2018. Convolutional Neural Networks: An Overview and Its Applications in Pattern Recognition. Smart Innovation, Systems and Technologies. DOI: 10.1007/978-981-15-7078-0_3
  • 41. Zhang S., Huang W., Zhang C. 2019. Three-channel convolutional neural networks for vegetable leaf disease recognition. Cognitive Systems Research, 53, 31–41. DOI: 10.1016/j.cogsys.2018.04.006
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56b7605d-849d-4324-bdc3-e46528dc3f8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.