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Abstract. The paper examines the problem of the influence of restrictions on freedom of 
horizontal displacements in thermally loaded sandwich beams. The classical theory of 
sandwich beams and panels with thin facings and a soft core has been applied. It was  
assumed that the cross-section of the beam could be asymmetric geometrically and materi-

ally. The beam has vertical supports and additional horizontal supports limiting the freedom 
of horizontal displacements. The supports are linearly elastic and the rigidity of the upper 
and lower support can be arbitrary. The static problem of single-span beam with support 
conditions identical at both ends of the beam was solved in the paper. Each of the sandwich 
facings has been subjected to temperature change. The derived formulas were used in the 
example illustrating the importance of the problem. 
 

Keywords: sandwich panels, thermal actions, boundary conditions, elastic supports  

Introduction 

Due to their specific structure, sandwich panels used in civil engineering are 
characterized by relatively high load-capacity at low weight. Sandwich core made 
of polyurethane foam, mineral wool or polystyrene is an excellent thermal insula-
tion. The core separates the faces, which results in a huge increase in the rigidity of 
the sandwich structure. Because during the operation of the building each external 
face of a sandwich has a different temperature, thermal stress has a huge impact on 
stress, strain and displacement of the panel. 

In the generally accepted theory [1-4] structural behavior of sandwich beams is 
described by ordinary differential equations. Relatively simple boundary conditions 
are used. In fact, beams and panels are spatial systems, which have much more 
complex support conditions. These conditions may be different for the lower and 
upper faces of the sandwich panel. Complex conditions can be taken into account 
by the theories of higher order [5-7], but their use requires sophisticated computa-
tional tools.  

The problem of the proper boundary conditions is particularly important in the 
case of thermal actions. The thermal actions are distortions. The influence of the 
initial distortions on the optimal design of support conditions in beams and frames 



J. Pozorska, Z. Pozorski 120

was studied in [8]. In the case of statically undetermined systems, deformations  
induced by temperature are constrained. The result is a corresponding state of 
stress. In [9] it is shown that the stress caused by temperature occurs in the single-
span beam with a deep-profiled facing. It was shown in [10] and [11] that the 
sandwich structures are very sensitive to the change of the support conditions.  

This paper proposes taking into account possibility of limiting the freedom of 
horizontal displacements at the supports. The formulas for the support reactions 
and stress in the faces were derived. On this basis, it is relatively easy to determine 
the appropriate field of strain and displacements. Presented in the article example 
illustrates the importance of this phenomenon. This work is a continuation of [12], 
which considered only systems that were symmetrical geometrically and mate-
rially. 

1. Formulation of the problem 

Consider a sandwich beam with thin but rigid facings and a thick, soft core.  

Action of static thermal load is examined. The beam’s initial temperature is T0. In 

the steady state, the upper face has a temperature T1, while the lower face has 

a temperature T2. In this paper we consider a sandwich beam with the boundary 

conditions shown in Figure 1. Extension or contraction of faces is limited by spring 

supports with stiffness k1 (upper face) and k2 (lower face). We allow all extreme 

cases such as rigid support (k1 = ∝, k2 = ∝), the freedom of displacement (k1 = 0,  

k2 = 0) and others. We assume different thickness of faces (t1 - thickness of the  

upper face, t2 - thickness of the lower face), various modules of elasticity (E1, E2) 

and different coefficients of thermal expansion of the face materials (α1, α2).  

Unknown horizontal displacement u and vertical displacement w are functions of 

the variable x determining the position of a point along the beam length.  

  

a) 

 

 

 

 

 

 

 

b) 

 

Fig. 1. The scheme of a one-span system with limits of horizontal displacements:  

a) boundary conditions and material parameters of the structure, b) unknown support  

reactions and displacements 
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The core provides cooperation of faces, however, due to its material parameters 

(longitudinal elasticity module is about 50,000 times smaller than the modulus of 

steel), the normal stresses in the core can be ignored. It should however take into 

account shear deformation of the core.  

We are looking for a solution of the single-span beam with the same supports at 

both ends (Fig. 1). The resulting solution will be able to be generalized to even 

more difficult, but a little practical case of multi-span beam with different spans 

and different stiffness of each elastic support. 

2. Solution of the static problem with thermal action 

Consider the beam presented in Figure 1 that originally had a temperature T0. 

After some time, the upper and lower faces have reached  temperatures T1 and T2. 

The change in temperature is a distortion. If it were possible, the upper and lower 

faces would extend in the longitudinal direction ε1 = α1(T1 – T0), ε2 = α2(T2 – T0),  

respectively. Because the horizontal displacements are limited, such displacement 

field is kinematically inadmissible. Thus, there is a certain stress field arising from 

the supports interaction. One of the key issues in the analysis of systems with 

a non-symmetric cross-section is to determine the axis of the beam. The neutral  

axis of the beam is best to designate so that longitudinal strain did not induce bend-

ing moments and the curvature did not cause the normal force. In the case of cross-

section composed of materials having different longitudinal elasticity module, the 

distance from the beam axis to the axis of the upper face eo and to the axis of the 

lower face eu is: 

 e
tEtE

tE
e
o

2211

22

+

= , (1) 

 e
tEtE

tE
e
u

2211

11

+

= , (2) 

where e is the distance between axes of faces. For such determined axis of the 

beam, the bending stiffness is: 
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where b denotes width of the beam. It is worth noting that in the classical theory of 

composites, it is assumed that the axis of the composite is in the middle of its 

height and generalized strain and stress fields couple.  
 

The issue of thermal loads requires some discussion. In the case of beams with 

a symmetrical cross-section thermal effects are usually separated into uniform and 
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non-uniform parts. The first part causes extension or contraction of the whole ele-

ment, while the second part induces curvature. In the case of non-symmetrical 

cross-sections the partition is not desirable because the thermal expansion coeffi-

cients of face materials are not in any relationship to the Young modules. As  

a result, the partition of the thermal effect on uniform and non-uniform may com-

plicate rather than simplify the problem. It is worth noting that the correctly speci-

fied curvature (in some publications curvature is formulated incorrectly) induced 

by the change of the temperature in the faces, has the following form: 

  
( ) ( )2 2 0 1 1 0
T T T T

e

α α
θ

− − −

= . (4) 

A single-span beam with horizontal spring supports limiting horizontal dis-

placements is shown in Figure 1a. Thermal actions induce forces H1 and H2 in the 

elastic supports. Both these forces, as well as other static quantities, depend on the 

Young modules, thermal expansion coefficients of facing material, thickness of 

faces, the distance between the facings (beam height), the width b and the span L of 

the beam and load conditions - temperatures T0, T1 and T2. Unknown horizontal 

displacements of the upper and lower face are denoted as ∆1 and ∆2. Unknown 

forces H1 and H2 can be expressed by unknown axial force X1 and bending moment 

X2 (Fig. 1b): 
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The forces H1 and H2 are proportional to the stiffness of the support k1, k2 and  

displacements ∆1 and ∆2. The horizontal displacements of the supports ∆1 and ∆2 

depend on the forces X1, X2 and temperature changes in the faces: 
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The symbols used in formulas (9) and (10) denote: δ11 - the horizontal  

displacement caused by the virtual force x1 = 1, δ22 - rotation caused by the virtual 

moment x2 = 1, δ1T - horizontal displacement caused by the temperature difference 

T1 − T0, δ2T - horizontal displacement caused by the temperature difference T2 − T0. 

In the case of beams shown in Figure 1b, the corresponding displacements and  

rotations are expressed as follows:  



Static response of thermally loaded sandwich beams with confined horizontal displacements … 123

  
2

1

2211

11

L

EbtEbt
⋅

+

=δ , (9) 

  
22

1

2

2211

2211

22

L

betEtE

tEtEL

B
S

⋅

+

=⋅=δ , (10) 

  ( )
2

0111

L
TT

T
⋅−= αδ , (11) 

  ( )
2

0222

L
TT

T
⋅−= αδ . (12) 

Comparing the right hand-sides of equations (7), (8) to (9), (10) and substituting 

(11)-(14), we obtain X1 and X2. The expressions for X1 and X2 are complex and  

depend on the k1 and k2, as well as other parameters of the model. Using the formu-

las derived for X1 and X2, and using (7), (8) we obtain much simpler expressions for 

H1 and H2, and each of these depends only on the value of a respective support 

stiffness:  
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Knowing all the forces acting on the structure, we can readily determine the 

displacements, strain and stress. 

3. Assessment of the impact of restrictions on freedom of horizontal 

displacements on the behavior of sandwich structure 

To demonstrate the impact of restrictions on freedom of horizontal displace-

ments of the sandwich panel on internal forces, a single-span beam shown in  

Figure 1a was considered. The following geometrical and material parameters were 

assumed: L = 3.0 m, b = 1.0 m, e = 0.0995 m, t1 = t2 = 0.0005 m, E1 = E2 =  

= 210 GPa, α1 = α2 = 12⋅10
–6
 1/°C. Thermal conditions represent typical conditions 

in the summer: T1 = 65°C, T2 = 20°C. Installation temperature of sandwich panels 

was T0 = 10°C.  

Figure 2a shows the stresses in the faces as a function of the stiffness of the 

support k1, for fixed k2 = 1 GN/m (support practically unmovable). In Figure 2b the 

stresses in faces as the function of k2, for fixed k1 = 1 GN/m can be observed. 
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Fig. 2. The stress level in the upper face (S1 - solid line) and in the lower face  

(S2 - dashed line) as the function of stiffness coefficients of the horizontal supports:  

a) fixed k2 = 1 GN/m and variable k1, b) fixed k1 = 1 GN/m and variable k2 

Discussing the obtained results, it can be concluded that the limiting of horizon-

tal displacements causes high stresses. With the assumed thermal conditions they 

reach for the upper and lower facing respectively –129.5 and –23.55 MPa,  

respectively. The analysis of formulas (15) and (16) shows that the stresses in the 

facings will be the greater, the higher the coefficient of thermal expansion and the 

temperature difference between the current and the reference temperature  

(temperature of assembly). In addition, an increase in the length of the beam, the 
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stiffness of the support or the Young module of face material practically increases 

the stress in the faces. Fortunately, the actual structures are flexible. The conducted  

analyzes show that in the case of sandwich panels, the rigidity of horizontal  

supporting is about 10000 kN/m. In this case, the stresses in the facings are falling  

radically.  

Conclusions 

The derived formulas and obtained results illustrate the impact of restrictions on 

freedom of horizontal support displacements on the behavior of beams and plates. 

The equations presented in the work are valid for non-symmetrical cross-sections 

of beams, for the full range of support elasticity. These formulas can be extended to 

the case of multi-span panels with arbitrary support conditions. 

The presented example proved that in the case of full restriction on horizontal 

displacement, the stresses in the faces 100 MPa. The fact that the temperature at the 

assembly affects the values of these stresses is also noteworthy. With a suscepti-

bility that exists in the real structures, stresses caused by the limitation of horizon-

tal displacements are not so high, however, the horizontal forces affects the  

mechanical fasteners. Moreover, the effect of temperature causes extension,  

contraction and bending of the sandwich panel. All these aspects should be  

taken into account in the design of the building envelope made of sandwich  

panels. 
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