PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accurate Establishment of Error Models for the Satellite Gravity Gradiometry Recovery and Requirements Analysis for the Future GOCE Follow-On Mission

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Firstly, the new single and combined error models applied to estimate the cumulative geoid height error are efficiently produced by the dominating error sources consisting of the gravity gradient of the satellite-equipped gradiometer and the orbital position of the space-borne GPS/GLONASS receiver using the power spectral principle. At degree 250, the cumulative geoid height error is 1.769 × 10–1 m based on the new combined error model, which preferably accords with a recovery accuracy of 1.760 × 10–1 m from the GOCE-only Earth gravity field model GO_CONS_GCF_2_TIM_R2 released in Germany. Therefore, the new combined error model of the cumulative geoid height is correct and reliable in this study. Secondly, the requirements analysis for the future GOCE Follow-On satellite system is carried out in respect of the preferred design of the matching measurement accuracy of key payloads comprising the gravity gradient and orbital position and the optimal selection of the orbital altitude of the satellite. We recommend the gravity gradient with an accuracy of 10–13-10–15 /s2 , the orbital position with a precision of 1-0.1 cm and the orbital altitude of 200-250 km in the future GOCE Follow-On mission.
Czasopismo
Rocznik
Strony
732--754
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, China
  • State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China
autor
  • School of Aerospace Engineering, Tsinghua University, Beijing, China
autor
  • Aerospace Dongfanghong Satellite Company Limited, Beijing, China
autor
  • Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, China
Bibliografia
  • Bender, P.L., R.S. Nerem, and J.M. Wahr (2003), Possible future use of laser gravity gradiometers, Space Sci. Rev. 108, 1-2, 385-392, DOI: 10.1023/ A:1026100130397.
  • Bian, S.F., and B. Ji (2006), The development and application of the gravity gradiometer, Prog. Geophys. 21, 660-664 (in Chinese).
  • Bobojć, A., and A. Drożyner (2011), GOCE satellite orbit in the aspect of selected gravitational perturbations, Acta Geophys. 59, 2, 428-452, DOI: 10.2478/ s11600-010-0052-3.
  • Bruinsma, S.L., J.C. Marty, G. Balmino, R. Biancale, C. Foerste, O. Abrikosov, and H. Neumayer (2010), GOCE gravity field recovery by means of the direct numerical method. In: Proc. ESA Living Planet Symposium, 27 June – 2 July 2010, Bergen, Norway.
  • Ditmar, P., R. Klees, and F. Kostenko (2003), Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data, J. Geodesy 76, 11-12, 690-705, DOI: 10.1007/s00190-002-0298-x.
  • Eshagh, M. (2010), Alternative expressions for gravity gradients in local northoriented frame and tensor spherical harmonics, Acta Geophys. 58, 2, 215- 243, DOI: 10.2478/s11600-009-0048-z.
  • Eshagh, M. (2011), On integral approach to regional gravity field modelling from satellite gradiometric data, Acta Geophys. 59, 1, 29-54, DOI: 10.2478/ s11600-010-0033-6.
  • Goiginger, H., E. Höck, D. Rieser, T. Mayer-Gürr, A. Maier, S. Krauss, R. Pail, T. Fecher, T. Gruber, J.M. Brockmann, I. Krasbutter, W.-D. Schuh, A. Jäggi, L. Prange, W. Hausleitner, O. Baur, and J. Kusche (2011), The combined satellite-only global gravity field model GOCO02S. In: Proc. 2011 General Assembly of the European Geosciences Union, 4-8 April 2011, Vienna, Austria.
  • Hsu, H.T. (2001), Satellite gravity missions – new hotpoint in geodesy, Sci. Surv. Mapp. 26, 1-3 (in Chinese).
  • Jenkins, G.M., and D.G. Watts (1968), Spectral Analysis and Its Applications, Holden-Day, San Francisco.
  • Johnson, D.M.S. (2011), Long baseline atom interferometry, Ph.D. Thesis, Stanford University, Department of Physics, Stanford, USA, 1-142.
  • Kaula, W.M. (1966), Theory of Satellite Geodesy, Blaisdell Publ. Co., Waltham.
  • Liu, X.G., Z.X. Pang, and J. Wu (2012), Earth’s gravitational field model determination from different types of gravimetric data based on iteration method, Prog. Geophys. 27, 6, 2342-2347, DOI: 10.6038/j.issn.1004-2903.2012.06. 009.
  • Meng, J.C., and S.Y. Liu (1993), Research on accuracies for satellite gravity gradiometry and Earth’s gravitational field, Chin. J. Geophys. 36, 725-739 (in Chinese).
  • Migliaccio, F., M. Reguzzoni, F. Sansò, C.C. Tscherning, and M. Veicherts (2010), GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Proc. ESA Living Planet Symposium, 27 June – 2 July 2010, Bergen, Norway.
  • Migliaccio, F., M. Reguzzoni, A. Gatti, F. Sansò, and M. Herceg (2011), A GOCEonly global gravity field model by the space-wise approach. In: Proc. 4th Int. GOCE User Workshop, European Geosciences Union (EGU), Vienna, Austria.
  • Milani, A., A. Rossi, and D. Villani (2005), A timewise kinematic method for satellite gradiometry: GOCE simulations, Earth Moon Planets 97, 1-2, 37-68, DOI: 10.1007/s11038-005-9042-x.
  • Moritz, H. (1971), Kinematic geodesy II, Rep. 165, Department of Geodetic Science, The Ohio State University, Columbus, USA.
  • Pail, R., H. Goiginger, R. Mayrhofer, W.D. Schuh, J.M. Brockmann, I. Krasbutter, E. Höck, and T. Fecher (2010), GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Proc. ESA Living Planet Symp., 28 June – 2 July 2010, Bergen, Norway, ESA SP-686.
  • Pail, R., A. Albertella, and H. Goiginger (2011a), Time-wise global GOCE gravity field models and their use for modelling ocean circulation. In: Proc. 25th General Assembly of International Union of Geodesy and Geophysics (IUGG) “Earth on the Edge: Science for a Sustainable Planet”, 27 June – 8 July 2011, Melbourne, Australia.
  • Pail, R., S. Bruinsma, F. Migliaccio, C. Förste, H. Goiginger, W.-D. Schuh, E. Höck, M. Reguzzoni, J.M. Brockmann, O. Abrikosov, M. Veicherts, T. Fecher, R. Mayrhofer, I. Krasbutter, F. Sansò, and C.C. Tscherning (2011b), First GOCE gravity field models derived by three different approaches, J. Geodesy 85, 11, 819-843, DOI: 10.1007/s00190-011-0467-x.
  • Pertusini, L., M. Reguzzoni, and F. Sansò (2010), Analysis of the covariance structure of the GOCE space-wise solution with possible applications. In: S.P. Mertikas (ed.), Gravity, Geoid and Earth Observation, IAG Commission 2: Gravity Field, Chania, Crete, Greece, 23-27 June 2008, International Association of Geodesy Symposia, Vol. 135, Springer, Berlin Heidelberg, 195-202.
  • Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling (1992a), Power spectra estimation using the FFT. In: W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, 542-551.
  • Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling (1992b), Power spectrum estimation by the maximum entropy (all poles) method. In: W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, 565-569.
  • Reguzzoni, M., and N. Tselfes (2009), Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis, J. Geodesy 83, 1, 13-29, DOI: 10.1007/s00190-008-0225-x.
  • Reguzzoni, M., A. Gatti, F. Migliaccio, and M. Veicherts (2010), The space-wise approach for the computation of a GOCE-only gravity field solution. In: Proc. American Geophysical Union (AGU), Fall Meeting 2010, Abstr. G33B-04.
  • Rummel, R. (2003), How to climb the gravity wall, Space Sci. Rev. 108, 1-2, 1-14, DOI: 10.1023/A:1026206308590.
  • Sanso, F., A. Gatti, and F. Migliaccio (2011), A space-wise gravity field model from one year of GOCE data. In: Proc. 25th General Assembly of International Union of Geodesy and Geophysics (IUGG) “Earth on the Edge: Science for a Sustainable Planet”, 27 June – 8 July 2011, Melbourne, Australia.
  • Tscherning, C.C. (1976), Computation of the second-order derivatives of the normal potential based on the representation by a Legendre series, Manuscr. Geod. 1, 71-92.
  • van Gelderen, M., and R. Koop (1997), The use of degree variances in satellite gradiometery, J. Geodesy 71, 6, 337-343, DOI: 10.1007/s001900050101.
  • Welch, P.D. (1967), The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust. AU-15, 70-73.
  • Yu, N., J.M. Kohel, J.R. Kellogg, and L. Maleki (2006), Development of an atominterferometer gravity gradiometer for gravity measurement from space, Appl. Phys. B 84, 4, 647-652, DOI: 10.1007/s00340-006-2376-x.
  • Zheng, W., H.T. Hsu, M. Zhong, and M.J. Yun (2011a), Efficient calibration of the non-conservative force data from the space-borne accelerometers of the twin GRACE satellites, Trans. Jpn. Soc. Aeronaut. Space Sci. 54, 184, 106- 110, DOI: 10.2322/tjsass.54.106.
  • Zheng, W., H.T. Hsu, M. Zhong, and M.J. Yun (2011b), Accurate and rapid determination of GOCE Earth’s gravitational field using time-space-wise approach associated with Kaula regularization, Chin. J. Geophys. 54, 1, 14- 21, DOI: 10.1002/cjg2.1581.
  • Zheng, W., H.T. Hsu, M. Zhong, and M.J. Yun (2012a), Efficient accuracy improvement of GRACE global gravitational field recovery using a new Intersatellite Range Interpolation Method, J. Geodyn. 53, 1-7, DOI: 10.1016/ j.jog.2011.07.003.
  • Zheng, W., H.T. Hsu, M. Zhong, and M.J. Yun (2012b), Precise recovery of the Earth’s gravitational field with GRACE: Intersatellite Range-Rate Interpolation Approach, IEEE Geosci. Remote Sens. Lett. 9, 3, 422-426, DOI: 10.1109/LGRS.2011.2171475.
  • Zheng, W., H.T. Hsu, M. Zhong, and M.J. Yun (2012c), A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth’s gravitational field recovery, Chin. Phys. B 21, 10, 109101-1–109101-8, DOI: 10.1088/1674-1056/21/10/109101.
  • Zheng, W., H.T. Hsu, M. Zhong, C.S. Liu, and M.J. Yun (2013), Efficient and rapid accuracy estimation of the Earth’s gravitational field from next-generation GOCE Follow-On by the analytical method, Chin. Phys. B 22, 4, 049101- 1–049101-8, DOI: 10.1088/1674-1056/22/4/049101.
  • Zheng, W., H.T. Hsu, M. Zhong, and M.J. Yun (2015a), Requirements analysis for future satellite gravity mission Improved-GRACE, Surv. Geophys. 36, 1, 87-109, DOI: 10.1007/s10712-014-9306-y.
  • Zheng, W., H.T. Hsu, M. Zhong, and M.J. Yun (2015b), Sensitivity analysis for key payloads and orbital parameters from the next-generation MoonGradiometer satellite gravity program, Surv. Geophys. 36, 1, 111-137, DOI: 10.1007/s10712-014-9310-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56b30d6f-85dc-4cb7-90ce-df1e112ba9cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.