PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Climate Change Impact on Hydrological Extremes: Preliminary Results from the Polish-Norwegian Project

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the background, objectives, and preliminary outcomes from the first year of activities of the Polish–Norwegian project CHIHE (Climate Change Impact on Hydrological Extremes). The project aims to estimate the influence of climate changes on extreme river flows (low and high) and to evaluate the impact on the frequency of occurrence of hydrological extremes. Eight “twinned” catchments in Poland and Norway serve as case studies. We present the procedures of the catchment selection applied in Norway and Poland and a database consisting of near-natural ten Polish and eight Norwegian catchments constructed for the purpose of climate impact assessment. Climate projections for selected catchments are described and compared with observations of temperature and precipitation available for the reference period. Future changes based on those projections are analysed and assessed for two periods, the near future (2021-2050) and the far-future (2071-2100). The results indicate increases in precipitation and temperature in the periods and regions studied both in Poland and Norway.
Czasopismo
Rocznik
Strony
477--509
Opis fizyczny
Bibliogr. 73 poz.
Twórcy
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor
  • Norwegian Water Resources and Energy Directorate, Oslo, Norway
autor
  • Norwegian Water Resources and Energy Directorate, Oslo, Norway
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor
  • Norwegian Water Resources and Energy Directorate, Oslo, Norway
autor
  • Norwegian Water Resources and Energy Directorate, Oslo, Norway
Bibliografia
  • Astrup, E. (2000), Homogeneity testing of hydrological data, NVE Rapport 7-2000, Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway (in Danish).
  • Beldring, S., T. Engen-Skaugen, E.J. Førland, and L.A. Roald (2008), Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites, Tellus A 60, 3, 439-450, DOI: 10.1111/j.1600-0870.2008. 00306.x.
  • Berg, P., H. Feldmann, and H.-J. Panitz (2012), Bias correction of high resolution regional climate model data, J. Hydrol. 448-449, 80-92, DOI: 10.1016/ j.jhydrol.2012.04.026.
  • Bergström, S., B. Carlsson, M. Gardelin, G. Lindström, A. Pettersson, and M. Rummukainen (2001), Climate change impacts on runoff in Sweden – assessments by global climate models, dynamical downscaling and hydrological modelling, Clim. Res. 16, 101-112, DOI: 10.3354/cr016101.
  • Bergström, S., J. Andréasson, and L.P. Graham (2012), Climate adaptation of the Swedish guidelines for design floods for dams. In: Proc. 24th ICOLD Congress on Large Dams, 6-8 June 2012, Kyoto, Japan, Q94.
  • Cancelliere, A., and J.D. Salas (2004), Drought length properties for periodicstochastic hydrologic data, Water Resour. Res. 40, 2, W02503, DOI: 10.1029/2002WR001750.
  • Chung, C., and J.D. Salas (2000), Drought occurrence probabilities and risks of dependent hydrologic processes, J. Hydrol. Eng. 5, 3, 259-268, DOI: 10.1061/(ASCE)1084-0699(2000)5:3(259).
  • Clarke, L.E., J.A. Edmonds, H.D. Jacoby, H.M. Pitcher, J.M. Reilly, and R.G. Richels (2007), Scenarios of greenhouse gas emissions and atmospheric concentrations, Sub-report 2.1a, U.S. Climate Change Science Program. Synthesis and Assessment Product 2.1a, CCSP, Washington, 154 pp.
  • Cloke, H.L., F. Wetterhall, Y. He, J.E. Freer, and F. Pappenberger (2013), Modelling climate impact on floods with ensemble climate projections. Quart. J. Roy. Meteorol. Soc. 139, 671, 282-297, DOI: 10.1002/qj.1998.
  • Doroszkiewicz, J., and R. Romanowicz (2014), WP4 internal report on identifying flood management measures and constructions, overview of policy and law for adaptation process in Poland, Report CHIHE/WP4/I, IGP PAS, Warsaw, Poland.
  • Dyrrdal, A.V., K. Isaksen, H.O. Hygen, and N.K. Meyer (2012), Changes in meteorological variables that can trigger natural hazards in Norway, Clim. Res. 55, 2, 153-165, DOI: 10.3354/cr01125.
  • Edenhofer, O., B. Knopf, T. Barker, L. Baumstark, E. Bellevrat, B. Chateau, P. Criqui, M. Isaac, A. Kitous, S. Kypreos, M. Leimbach, K. Lessmann, B. Magné, S. Scrieciu, H. Turton, and D.P. van Vuuren (2010), The economics of low stabilization: model comparison of mitigation strategies and costs, The Energy J. 31, 1, 11-48, DOI: 10.5547/ISSN0195-6574-EJVol31-NoSI-2.
  • Edvardsen, S.-M., and C.M. Roald (2012), Flood zone map Naustdal, NVE Rapport 23/2012, Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway (in Norwegian).
  • EEA (2014), Corine Land Cover 2006 raster data, European Environment Agency, http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006- raster.
  • Favre, A.C., S. El Adlouni, L. Perreault, N. Thiémonge, and B. Bobée (2004), Multivariate hydrological frequency analysis using copulas, Water Resour. Res. 40, 1, W01101, DOI: 10.1029/2003WR002456.
  • Fernández, B., and J.D. Salas (1999a), Return period and risk of hydrologic events: I: Mathematical formulation, J. Hydrol. Eng. 4, 4, 297-307, DOI: 10.1061/ (ASCE)1084-0699(1999)4:4(297).
  • Fernández, B., and J.D. Salas (1999b), Return period and risk of hydrologic events: II. Applications, J. Hydrol. Eng. 4, 4, 308-316, DOI: 10.1061/(ASCE) 1084-0699(1999)4:4(308).
  • Fleig, A.K., L.M. Andreassen, E. Barfod, J. Haga, L.E. Haugen, H. Hisdal, K. Melvold, and T. Saloranta (2013) Norwegian Hydrological Reference Dataset for climate change studies, NVE Report 2-2013, Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway.
  • Gudmundsson, L., J.B. Bremnes, J.E. Haugen, and T. Engen-Skaugen (2012), Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci. 16, 3383-3390, DOI: 10.5194/hess-16-3383-2012.
  • Gustard, A., and S. Demuth (eds.) (2009), Manual on low-flow estimation and prediction, Operational Hydrology Report No. 50,WMO-No. 1029, World Meteorological Organization, Geneva, Switzerland.
  • Hannaford, J., and T. Marsh (2006), An assessment of trends in UK runoff and low flows using a network of undisturbed catchments, Int. J. Climatol. 26, 9, 1237-1253, DOI: 10.1002/joc.1303.
  • Hannaford, J., and T.J. Marsh (2008), High-flow and flood trends in a network of undisturbed catchments in the UK, Int. J. Climatol. 28, 10, 1325-1338, DOI: 10.1002/joc.1643.
  • Hannah, D.M., S. Demuth, H.A.J. van Lanen, U. Looser, C. Prudhomme, G. Rees, K. Stahl, and L.M. Tallaksen (2011), Large-scale river flow archives: importance, current status and future needs, Hydrol. Process. 25, 7, 1191- 1200, DOI: 10.1002/hyp.7794.
  • Hisdal, H., and L.M. Tallaksen (2003), Estimation of regional meteorological and hydrological drought characteristics: a case study for Denmark, J. Hydrol. 281, 3, 230-247, DOI: 10.1016/S0022-1694(03)00233-6.
  • IOŚ–PIB (2013), Strategic adaptation plan for areas vulnerable for climate change 2020 prespective, Institute of Environmental Protection – National Research Institute (IOŚ–PIB), Warszawa, Poland (in Polish).
  • IPCC (2007), Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York.
  • IPCC (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. Stocker et al. (eds.), Cambridge University Press, New York, 1535 pp.
  • Jacob, D., J. Petersen, B. Eggert, A. Alias, O.B. Christensen, L.M. Bouwer, A. Braun, A. Colette, M. Déqué, G. Georgievski, E. Georgopoulou, A. Gobiet, L. Menut, G. Nikulin, A. Haensler, N. Hempelmann, C. Jones, K. Keuler, S. Kovats, N. Kröner, S. Kotlarski, A. Kriegsmann, E. Martin, E. van Meijgaard, C. Moselely, S. Pfeifer, S. Preuschmann, C. Radermacher, K. Radtke, D. Rechid, M. Rounsevell, P. Samuelsson, S. Somot, J.-F. Soussana, C. Teichmann, R. Valentini, R. Vautard, B. Weber, and P. Yiou (2014), EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change 14, 2, 563- 578, DOI: 10.1007/s10113-013-0499-2.
  • Kaczmarek, Z. (2003), The impact of climate variability on flood risk in Poland, Risk Anal. 23, 3, 559-566, DOI: 10.1111/1539-6924.00336.
  • Kaczmarek, Z., and J. Napiórkowski (1996), Water resources adaptation strategy in an uncertain environment. In: J.B. Smith, N. Bhatti, G.V. Menzhulin, R. Benioff, M. Campos, B. Jallow, F. Rijsberman, M.I. Budyko, and R.K. Dixon (eds.), Adapting to Climate Change, Springer, New York, 211- 224, DOI: 10.1007/978-1-4613-8471-7_18.
  • Kaczmarek, Z., J. Napiórkowski, and K.M. Strzepek (1996), Climate change impacts on the water supply system in the Warta river catchment, Poland, Int. J. Water Resour. Dev. 12, 2, 165-180, DOI: 10.1080/ 07900629650041939.
  • Kotlarski, S., K. Keuler, O.B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer (2014), Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev. 7, 4, 1297- 1333, DOI: 10.5194/gmd-7-1297-2014.
  • Kriaučiūnienė, J., D. Meilutyte-Barauskienė, E. Rimkus, J. Kažys, and J. Vincevičius (2008), Climate change impact on hydrological processes in Lithuanian Nemunas river basin, Baltica 21, 1-2, 51-61.
  • Kundzewicz, Z.W., D. Graczyk, T. Mauer, I. Pińskwar, M. Radziejewski, C. Svensson, and M. Szwed (2005), Trend detection in river flow series: 1. Annual maximum flow, Hydrol. Sci. J. 50, 5, 797-810, DOI: 10.1623/ hysj.2005.50.5.797.
  • Kundzewicz, Z.W., I. Pińskwar, and G.R. Brakenridge (2013), Large floods in Europe, 1985-2009, Hydrol. Sci. J. 58, 1, 1-7, DOI: 10.1080/02626667. 2012.745082.
  • Lafon, T., S. Dadson, G. Buys, and C. Prudhomme (2013), Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods, Int. J. Climatol. 33, 6, 1367-1381, DOI: 10.1002/joc.3518. Lawrence, D., and I. Haddeland (2011), Uncertainty in hydrological modelling of climate change impacts in four Norwegian catchments, Hydrol. Res. 42, 6, 457-471, DOI: 10.2166/nh.2011.010.
  • Lawrence, D., and H. Hisdal (2011), Hydrological projections for floods in Norway under a future climate, NVE Report 5-2011, Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway.
  • Lawrence, D., I. Haddeland, and E. Langsholt (2009), Calibration of HBV hydrological models using PEST parameter estimation, NVE Report 1-2009, Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway, 44 pp.
  • Li, C.Z., L. Zhang, H. Wang, Y.Q. Zhang, F.L. Yu, and D.H. Yan (2012), The transferability of hydrological models under nonstationary climatic conditions, Hydrol. Earth Syst. Sci. 16, 1239-1254, DOI: 10.5194/hess-16- 1239-2012.
  • Marsh, T. (2010), The UK Benchmark Network – designation, evolution and application. In: Fifth Int. Conf. on Water Resources and Environment Research, 5-7 July 2010, Quebec City, Canada.
  • Mishra, A.K., and P. Coulibaly (2010), Hydrometric network evaluation for Canadian watersheds, J. Hydrol. 380, 3-4, 420-437, DOI: 10.1016/j.jhydrol. 2009.11.015.
  • Mishra, A.K., and V.P. Singh (2011), Drought modeling – A review, J. Hydrol. 403, 1-2, 157-175, DOI: 10.1016/j.jhydrol.2011.03.049.
  • Monk, W.A., D.L. Peters, R.A. Curry, and D.J. Baird (2011), Quantifying trends in indicator hydroecological variables for regime-based groups of Canadian rivers, Hydrol. Process. 25, 19, 3086-3100, DOI: 10.1002/hyp.8137.
  • Moss, R.H., J.A. Edmonds, K.A. Hibbard, M.R. Manning, S.K. Rose, D.P. van Vuuren, T.R. Carter, S. Emori, M. Kainuma, T. Kram, G.A. Meehl, J.F.B. Mitchell, N. Nakicenovic, K. Riahi, S.J. Smith, R.J. Stouffer, A.M. Thomson, J.P. Weyant, and T.J. Wilbanks (2010), The next generation of scenarios for climate change research and assessment, Nature 463, 747-756, DOI: 10.1038/nature08823.
  • Nakicenovic, N., J. Alcamo, G. Davis, B. De Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grübler, T.Y. Jung, T. Kram, E.L. La Rovere, L. Michaelis, S. Mori, T. Morita, W. Pepper, H. Pitcher, L. Price, K. Raihi, A. Roehrl, H.-H. Rogner, A Sankovski, M. Schlesinger, P. Shukla, S. Smith, R. Swart, S. van Rooijen, N. Victor, and Z. Dadi (2000), Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 599 pp.
  • Nash, J.E., and J.V. Sutcliffe (1970), River flow forecasting through conceptual models. Part I – A discussion of principles, J. Hydrol. 10, 3, 282-290, DOI: 10.1016/0022-1694(70)90255-6.
  • Osuch, M., J. Kindler, R.J. Romanowicz, K. Berbeka, and A. Banrowska (2012), Strategia adaptacji Polski do zmian klimatu w zakresie sektora “Zasoby i gospodarka wodna”, KLIMADA Project, Institute of Environmental Protection, National Research Institute, Warsaw, Poland (in Polish).
  • Osuch, M., R.J. Romanowicz, D. Lawrence, and W.K. Wong (2015), Assessment of the influence of bias correction on meteorological drought projections for Poland, Hydrol. Earth Syst. Sci. Discuss. 12, 10331-10377, DOI: 10.5194/ hessd-12-10331-2015.
  • Piani, C., J.O. Haerter, and E. Coppola (2010), Statistical bias correction for daily precipitation in regional climate models over Europe, Theor. Appl. Climatol. 99, 1, 187-192, DOI: 10.1007/s00704-009-0134-9.
  • Raje, D., and P.P. Mujumdar (2010), Reservoir performance under uncertainty in hydrologic impacts of climate change, Adv. Water Resour. 33, 3, 312-326, DOI: 10.1016/j.advwatres.2009.12.008.
  • Reitan, T., and A. Petersen-Øverleir (2005), Evaluating the homogeneity of hydrological time series with the help of Bayesian regression, NVE Report 5-2005, Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway (in Norwegian).
  • Romanowicz, R.J., and M. Osuch (2011), Assessment of land use and water management induced changes in flow regime of the Upper Narew, Phys. Chem. Earth 36, 13, 662-672, DOI: 10.1016/j.pce.2011.04.012. Romanowicz, R.J., M. Osuch, and M. Grabowiecka (2013), On the choice of calibration periods and objective functions: A practical guide to model parameter identification, Acta Geophys. 61, 6, 1477-1503, DOI: 10.2478/ s11600-013-0157-6.
  • Sadowski, M. (2008), An approach to adaptation to climate changes in Poland, Climate Change 90, 4, 443-451, DOI: 10.1007/s10584-008-9394-0.
  • Salvadori, G., and C. De Michele (2004), Frequency analysis via copulas: Theoretical aspects and applications to hydrological events, Water Resour. Res. 40, 12, W12511, DOI: 10.1029/2004WR003133.
  • Shiau, J., and H. Shen (2001), Recurrence analysis of hydrologic droughts of differing severity, J. Water Resour. Plan. Manage 127, 1, 30-40, DOI: 10.1061/(ASCE)0733-9496(2001)127:1(30).
  • Slack, J.R., and J.M. Landwehr (1992), Hydro-climatic data network (HCDN); A U.S. Geological Survey streamflow data set for the United States for the study of climatic variations, 1874-1988, Open-file Report 92-129, U. S. Geol. Survey, Reston, USA.
  • Sorteberg, A., I. Haddeland, J.E. Haugen, S. Sobolowski, and W.K. Wong (2014), Evaluation of distribution mapping based bias correction methods, Norwegian Centre for Climate Services, NCCS Report 1/2014, 23 pp.
  • Stahl, K., H. Hisdal, J. Hannaford, L.M. Tallaksen, H.A.J. van Lanen, E. Sauquet, S. Demuth, M. Fendekova, and J. Jódar (2010), Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci. 14, 2367-2382, DOI: 10.5194/hess-14-2367-2010.
  • Storn, R., and K. Price (1997), Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11, 4, 341-359, DOI: 10.1023/A:1008202821328.
  • Strupczewski, W.G., K. Kochanek, E. Bogdanowicz, W. Feluch, and I. Markiewicz (2012), A Two-Level Method of Estimation of Non-stationary Flood Quantiles, Monografie Komitetu Gospodarki Wodnej PAN, Warszawa, No. 35, 109-124 (in Polish).
  • Strupczewski, W.G., E. Bogdanowicz, and S. Debele (2015), The estimation of trends in quantiles by means of selected pdf fitted to seasonal, annual or partial duration (named also Peaks Over Threshold – POT) flow series, Report CHIHE/WP3/I, IGP PAS, Warsaw, Poland.
  • Teng, J., J. Vaze, F.H.S. Chiew, B. Wang, and J.-M. Perraud (2012), Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff, J. Hydrometeorol. 13, 1, 122- 139, DOI: 10.1175/JHM-D-11-058.1.
  • Thorne, J.H., R. Boynton, L. Flint, A. Flint, and T.‐N. Le (2010), Development and application of downscaled hydroclimatic predictor variables for use in climate vulnerability and assessment studies, Publication No. CEC‐500‐ 2012‐010, California Energy Commission, Davis, USA.
  • Tveito, O.E., I. Bjørdal, A.O. Skjelvåg, and B. Aune (2005), A GIS-based agroecological decision system based on gridded climatology, Meteorol. Appl. 12, 1, 57-68, DOI: 10.1017/S1350482705001490.
  • van der Linden, P., and J.F.B. Mitchell (2009), ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, Exeter, UK.
  • van Vuuren, D.P., P.L. Lucas, and H. Hilderink (2007), Downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels, Global Environ. Change 17, 1, 114-130, DOI: 10.1016/j.gloenvcha.2006.04.004.
  • Veijalainen, N., E. Lotsari, P. Alho, B. Vehviläinen, and J. Käyhkö (2010), National scale assessment of climate change impacts on flooding in Finland, J. Hydrol. 391, 3-4, 333-350, DOI: 10.1016/j.jhydrol.2010.07.035.
  • Whitfield, P.H., D.H. Burn, J. Hannaford, H. Higgins, G.A. Hodgkins, T. Marsh, and U. Looser (2012), Reference hydrologic networks I. The status and potential future directions of national reference hydrologic networks for detecting trends, Hydrol. Sci. J. 57, 8, 1562-1579, DOI: 10.1080/02626667. 2012.728706.
  • Wilson, D., H. Hisdal, and D. Lawrence (2010), Has streamflow changed in the Nordic countries? – Recent trends and comparisons to hydrological projections, J. Hydrol. 394, 3-4, 334-346, DOI: 0.1016/j.jhydrol.2010. 09.010.
  • Wong, W.K., S. Beldring, T. Engen-Skaugen, I. Haddeland, and H. Hisdal (2011), Climate change effects on spatiotemporal patterns of hydroclimatological summer droughts in Norway, J. Hydrometeorol. 12, 6, 1205-1220, DOI: 10.1175/2011JHM1357.1.
  • Yang, W., J. Andréasson, L.P. Graham, J. Olsson, J. Rosberg, and F. Wetterhall (2010), Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies, Hydrol. Res. 41, 3-4, 211-229, DOI: 10.2166/nh.2010.004.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56b0ade6-8eb9-4c05-b13a-aabbcdb39bb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.