PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of two-dimensional photonic crystal octagonal ring resonator based eight channel demultiplexer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We proposed a high performance eight channel demultiplexer using two-dimensional photonic crystal octagonal ring resonator for wavelength division multiplexing applications. The performance parameters such as transmission efficiency, Q factor, spectral width, resonant wavelength, crosstalk and channel spacing of the proposed demultiplexers are evaluated. The plane wave expansion method manipulates photonic band gap of periodic and non-periodic structure. Finite-difference time-domain method is used to evaluate the performance parameters of designed two-dimensional photonic crystal structure. The proposed demultiplexer provides overall transmission efficiency, Q factor, spectral width of about 98%, 1968 and 0.8 nm, respectively. The ultra-compact eight channel demultiplexer performs better than the reported one. Hence this work can be implemented for real time applications.
Czasopismo
Rocznik
Strony
7--18
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
  • Mount Zion College of Engineering and Technology, Pudukkottai, Tamil Nadu, India
  • Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
  • Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
  • Mount Zion College of Engineering and Technology, Pudukkottai, Tamil Nadu, India
Bibliografia
  • [1] KEISER G.E., A review of WDM technology and applications, Optical Fiber Technology 5(1), 1999, pp. 3–39.
  • [2] JIE ZHA, ZHI-YONG ZHONG, HUAI-WU ZHANG, QI-YE WEN, Differences of band gap characteristics of square and triangular lattice photonic crystals in terahertz range, Journal of Electronic Science and Technology 7(3), 2009, pp. 268–271.
  • [3] PARTHA SONA MAJI, PARTHA ROY CHAUDHURI, Near-elliptic core triangular-lattice and square-lattice PCFs: a comparison of birefringence, cut-off and GVD characteristics towards fiber device application, Journal of the Optical Society of Korea 18(3), 2014, pp. 207–216.
  • [4] JOANNOPOULOS J.D., MEADE R.D., WINN J.N., Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NI, USA, 1995.
  • [5] ROBINSON S., NAKKEERAN R., Bandstop filter for photonic integrated circuits using photonic crystal with circular ring resonator, Journal of Nanophotonics 5(1), 2011, article ID 053521.
  • [6] ROBINSON S., NAKKEERAN R., Performance evaluation of add drop filter by studying rod shape and filling fraction, Optoelectronics and Advanced Materials: Rapid Communications 5, 2011, pp. 948–955.
  • [7] ROBINSON S., NAKKEERAN R., Investigation on two dimensional photonic crystal resonant cavity based bandpass filter, Optik – International Journal for Light and Electron Optics 123(5), 2012, pp. 451–457.
  • [8] HAMED ALIPOUR-BANAEI, FARHAD MEHDIZADEH, Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters, Optik – International Journal for Light and Electron Optics 124(17), 2013, pp. 2639–2644.
  • [9] ZEXUAN QIANG, WEIDONG ZHOU, SOREF R.A., Optical add-drop filters based on photonic crystal ring resonators, Optics Express 15(4), 2007, pp. 1823–1831.
  • [10] ROBINSON S., NAKKEERAN R., Photonic crystal ring resonator based add-drop filter using hexagonal rods for CWDM systems, Optoelectronics Letters 7(3), 2011, pp. 164–166.
  • [11] LI L., LIU G.Q., Photonic crystal ring resonator channel drop filter, Optik – International Journal for Light and Electron Optics 124(17), 2013, pp. 2966–2968.
  • [12] TAALBI A., BASSOU G., MAHMOUD M.Y., New design of channel drop filters based on photonic crystal ring resonators, Optik – International Journal for Light and Electron Optics 124(9), 2013, pp. 824–827.
  • [13] MAHMOUD YOUCEF MAHMOUD, GHAOUTI BASSOU, AHMED TAALBI, ZOHEIR MOHAMED CHEKROUN, Optical channel drop filters based on photonic crystal ring resonators, Optics Communications 285(3), 2012, pp. 368–372.
  • [14] WENYUAN RAO, YANJUN SONG, MINGKAI LIU, CHONGJUN JIN, All-optical switch based on photonic crystal microcavity with multi-resonant modes, Optik – International Journal for Light and Electron Optics 121(21), 2010, pp. 1934–1936.
  • [15] LIU Y., SALEMINK H.W.M., Photonic crystal-based all-optical on-chip sensor, Optics Express 20(18), 2012, pp. 19912–19920.
  • [16] YONGHAO CUI, QI WU, SCHONBRUN E., TINKER M., LEE J.-B., WON PARK, Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength, IEEE Photonics Technology Letters 20(8), 2008, pp. 641–643.
  • [17] DAQUAN YANG, HUIPING TIAN, YUEFENG JI, High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends, Optics Communications 285(18), 2012, pp. 3752–3757.
  • [18] INSU PARK, HYUN-SHIK LEE, HYUN-JUN KIM, KYUNG-MI MOON, SEUNG-GOL LEE, BEOM-HOAN O, SE-GEUN PARK, EL-HANG LEE, Photonic crystal power-splitter based on directional coupling, Optics Express 12(15), 2004, pp. 3599–3604.
  • [19] MANZACCA G., PACIOTTI D., MARCHESE A., SVALUTO MOREOLO M., CINCOTTI G., 2D photonic crystal cavity-based WDM multiplexer, Photonics and Nanostructures – Fundamentals and Applications 5(4), 2007, pp. 164–170.
  • [20] SWATI RAWAL, SINHA R.K., Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer, Optics Communications 282(19), 2009, pp. 3889–3894.
  • [21] ROSTAMI A., NAZARI F., ALIPOUR BANAEI H., BAHRAMI A., A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure, Photonics and Nanostructures – Fundamentals and Applications 8(1), 2010, pp. 14–22.
  • [22] ROSTAMI A., ALIPOUR BANAEI H., NAZARI F., BAHRAMI A., An ultra-compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure, Optik – International Journal for Light and Electron Optics 122(16), 2011, pp. 1481–1485.
  • [23] XUAN ZHANG, QINGHUA LIAO, TIANBAO YU, NIANHUA LIU, YONGZHEN HUANG, Novel ultracompact wavelength division demultiplexer based on photonic band gap, Optics Communications 285(3), 2012, pp. 274–276.
  • [24] BOUAMAMI S., NAOUM R., Compact WDM demultiplexer for seven channels in photonic crystal, Optik – International Journal for Light and Electron Optics 124(16), 2013, pp. 2373–2375.
  • [25] DJAVID M., MONIFI F., GHAFFARI A., ABRISHAMIAN M.S., Heterostructure wavelength division demultiplexers using photonic crystal ring resonators, Optics Communications 281(15–16), 2008, pp. 4028–4032.
  • [26] RAKHSHANI M.R., MANSOURI-BIRJANDI M.A., Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators, Journal of Electromagnetic Waves and Applications 26(13), 2012, pp. 1700–1707.
  • [27] MANSOURI-BIRJANDI M.A., RAKHSHANI M.R., A new design of tunable four port wavelength demultiplexer by photonic crystal ring resonators, Optik – International Journal for Light and Electron Optics 124(23), 2013, pp. 5923–5926.
  • [28] GHORBANPOUR H., MAKOUEI S., 2-channel all optical demultiplexer based on photonic crystal ring resonator, Frontiers of Optoelectronics 6(2), 2013, pp. 224–227.
  • [29] RAKHSHANI M.R., MANSOURI-BIRJANDI M.A., Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators, Physica E: Low-dimensional Systems and Nanostructures 50, 2013, pp. 97–101.
  • [30] ALIPOUR-BANAEI H., FARHAD MEHDIZADEH, SOMAYE SERAJMOHAMMADI, A novel 4-channel demultiplexer based on photonic crystal ring resonators, Optik – International Journal for Light and Electron Optics 124(23), 2013, pp. 5964–5967.
  • [31] NIKHIL DEEP GUPTA, VIJAY JANYANI, Dense wavelength division Demultiplexing using photonic crystal waveguides based on cavity resonance, Optik – International Journal for Light and Electron Optics 125(19), 2014, pp. 5833–5836.
  • [32] MEHDIZADEH F., SOROOSH M., A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities, Photonic Network Communications 31(1), 2016, pp. 65–70.
  • [33] XIANG-NAN ZHANG, GUI-QIANG LIU, ZHENGQI LIU, YING HU, MULIN LIU, Three-channels wavelength division multiplexing based on asymmetrical coupling, Optik – International Journal for Light and Electron Optics 126(11–12), 2015, pp. 1138–1141.
  • [34] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., Optical wavelength demultiplexer based on photonic crystal ring resonators, Photonic Network Communications 29(2), 2015, pp. 146–150.
  • [35] VENKATACHALAM K., SRIRAM KUMAR D., ROBINSON S., Analysis and design of photonic crystal based demultiplexer, 2015 3rd International Conference on Signal Processing, Communication and Networking (ICSCN), 2015, pp. 1–4.
  • [36] JOHNSON S.G., JOANNOPOULOS J.D., Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis, Optics Express 8(3), 2001, pp. 173–190.
  • [37] PENDRY J.B., MACKINNON A., Calculation of photon dispersion relations, Physical Review Letters 69(19), 1992, pp. 2772–2775.
  • [38] TAFLOVE A., HEGNESS S.C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, Boston, MA, USA, 2000.
  • [39] PELOSI G., COCCIOLI R., SELLERI S., Quick Finite Elements for Electromagnetic Waves, Artech House, Boston, London, 1997.
  • [40] KANE YEE, Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media, IEEE Transactions on Antennas and Propagation 14(3), 1996, pp. 302–307.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56afe39d-929e-4c2e-aeae-6a8ff9d18262
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.