Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The assessment of groundwater vulnerability is a crucial part of planning and water management because it can identify areas where aquifers are more susceptible to contamination. Depending on the vulnerability assessment method, the results can differ significantly. Consequently, different methods can provide ambiguous information that could further influence decision-making processes in planning or water management. For the Pliszka River catchment, the intrinsic groundwater vulnerability of the uppermost aquifer was estimated using four different methods: DRASTIC, GOD, and two methods that are based on empirical formulas of water residence time in an unsaturated zone. The input data include a series of thematic maps supplemented by 1,322 shallow borehole profiles and laboratory tests of samples collected in the course of fieldwork. The collected data were processed in GIS software, and the results of each method were mapped in high resolution. The resulting maps of groundwater vulnerability were then quantitatively compared to validate their applicability for the assessment of groundwater vulnerability in a typical North European Lowland river catchment. The maps generated by the DRASTIC and GOD methods are dominated by areas with moderately high (54.6 and 48.4%, respectively) and moderate groundwater vulnerability (32.7 and 32.3%, respectively). No areas of high groundwater vulnerability are present. One of the water residence time methods provides results similar to the previous methods at the catchment scale, and one method yields high groundwater vulnerability values for the majority of area.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
166--176
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Adam Mickiewicz University, Faculty of Geographical and Geological Sciences, Institute of Geology, Maków Polnych 16, 61-606 Poznań, PoIand
autor
- ul. Borówkowa 2, 62-002 Suchy Las, Poland
Bibliografia
- 1. Aller, L., Bennett, T., Lehr, J.H., Petty, R.J., Hackett, G., 1987. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. United States Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma.
- 2. Allred, B.J., 2000. Survey of fractured glacial till geotechnical characteristics: hydraulic conductivity, consolidation, and shear strength. The Ohio Journal of Science, 100: 63-72.
- 3. Anornu, G.K., Kabo-bah, A.T., 2013. Evaluation of AVI and DRASTIC methods for groundwater vulnerability mapping. Journal of Environment and Ecology, 4: 126-135.
- 4. Bachmat, Y., Collin, M., 1987. Mapping to assess groundwater vulnerability to pollution. In: Vulnerability of Soil and Groundwater to Pollutants, Proceedings and Information (eds. W. van Duijvenbooden and H.G. van Waegeningh): 297-307. TNO Committee on Hydrological Research, Hague.
- 5. Bakesi, G., McConchie, J., 2000. Empirical assessment of the influence of the unsaturated zone on aquifer vulnerability, Manawatu region, New Zealand. Ground Water, 38: 193-199.
- 6. Civita, M.V., 1994. Le carte della vulnerabilita degli acquiferi all'inquinamento: teoria & pratica (in Italian). Pitagora Editrice, Bologna.
- 7. Civita, M.V., 2010. The combined approach when assessing and mapping groundwater vulnerability to contamination. Journal of Water Resource Protection, 2: 14-28.
- 8. Davis, S.N., 1969. Porosity and permeability of natural materials. In: Flow through Porous Media (ed. R.J.M. De Wiest): 54-89. Academic Press, New York.
- 9. Debernardi, L., De Luca, D.A., Lasagna, M., 2008. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environmental Geology, 55: 539-558.
- 10. Dixon, B., 2005. Groundwater vulnerability mapping: a GIS and fuzzy rule based integrated tool. Applied Geography, 25: 327-347.
- 11. Doerfliger, N., Zwahlen, F., 1997. EPIK: a new method for outlining of protection areas in karstic environment. In: International Symposium and Field Seminaron “Karst waters and environmental impacts”, Antalya, Turkey (eds. G. Gunay and A.I. Jonshon): 117-123. Balkema, Rotterdam.
- 12. Domenico, P.A., Schwartz, F.W., 1998. Physical and Chemical Hydrogeology, 2nd ed. John Wiley & Sons, New York.
- 13. Fitzsimons, V.P., Misstear, B.D.R., 2006. Estimating groundwater recharge through tills: a sensitivity analysis of soil moisture budgets and till properties in Ire i and. Hydrogeology Journal, 14: 548-561.
- 14. Foster, S., 1987. Fundamental concepts in aquifer vulnerability pollution risk and protection strategy. In: Vulnerabili ty of Soil and Groundwater to Pollutants, Proceedings and Information (eds. W. van Duijvenbooden and H.G. van Waegeningh): 69-86. TNO Committee on Hydrological Research, Hague.
- 15. Foster, S., Hirata, R., 1988. Groundwater pollution risk assessment: a methodology using available data. WHO-PAHO/HPE- CEPIS Technical Manual. Lima, Peru.
- 16. Foster, S., Hirata, R., Andreo, B., 2013. The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection? Hydrogeology Journal, 21: 1389-1392.
- 17. Gogu, R.C., Dassargues, A., 2000. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39: 549-559.
- 18. Healy, R.W., 2010. Estimating Groundwater Recharge. Cambridge University Press.
- 19. Hernández-Espriú, A., Reyna-Gutiérrez, A., Sánchez-León, E., Cabral-Cano, E., Carrera-Hernández, J., Martínez-Santos, P., Macías-Medrano, S., Falorni, G., Colombo, D., 2014. The DRASTIC-Sg model: an extension to the DRASTIC approach for mapping groundwater vulnerability in aquifers subject to differential land subsidence, with application to Mexico City. Hydrogeology Journal, 22: 1469-1485.
- 20. Hiscock, K.M., Bense, V.F., 2014. Hydrogeology: Principles and Practice, 2nd ed. Wiley Blackwell, Oxford.
- 21. Jørgensen, P.R., McKay, L.D., Kistrup, J.P., 2004. Aquifer vulnerability to pesticide migration through till aquitards. Ground Water, 42: 841-855.
- 22. Khan, A., Khan, H.H., Umar, R., Khan, M.H., 2014. An integrated approach for aquifer vulnerability mapping using GISand rough sets: study from an alluvial aquifer in North India. Hydrogeology Journal, 22: 1561-1572.
- 23. Klint, K.E.S., Nilsson, B., Troldberg, L., Jakobsen, P.R., 2013. A poly morphological landform approach for hydrogeological applications in heterogeneous glacial sediments. Hydrogeology Journal, 21: 1247-1264.
- 24. Krogulec, E., 2006. Methods and results of groundwatervulnerability evaluation to contamination in the Kampinoski National Park, central Poland. Acta Geological Polonica, 56: 349-359.
- 25. Lee, S., 2003. Evaluation of waste disposal site using the DRASTIC system in Southern Korea. Environmental Geology, 44: 654-664.
- 26. Ligget, J.E., Talwar, S., 2009. Groundwater vulnerability assessments and integrated water resource management. Stream line Watershed Management Bulletin, 13: 18-29.
- 27. Macioszczyk, T., 1999. Time of the vertical seepage as an indicator of the aquifers’ vulnerability (in Polish with English summary). Przegląd Geologiczny, 47: 731-736.
- 28. Makonto, O.T., Dippenaar, M.A., 2014. Aquifer vulnerability using recharge, depth to groundwater, soil type and slope to classify the vadose zone (Molototsi and Middle Letaba quaternary catchment, Limpopo Province, South Africa). Environmental Earth Sciences, 72: 1615-1623.
- 29. Maxe, L., Johansson, P.-O., 1998. Assessing groundwater vulnerability using travel time and specific surface area as indicators. Hydrogeology Journal, 6: 441-449.
- 30. Misstear, B.D.R., Brown, L., Daly, D., 2009. A methodology for making initial estimates of groundwater recharge from groundwater vulnerability mapping. Hydrogeology Journal, 17: 275-285.
- 31. Ravbar, N., Goldscheider, N., 2009. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeology Journal, 17: 725-733.
- 32. Schwartz, M.O., 2006. Numerical modelling of groundwater vulnerability: the example Namibia. Environmental Geology, 50: 237-249.
- 33. Sztromwasser, E., 2005. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1:50 000, ark. Torzym (in Polish). Ministerstwo Środowiska, Warszawa.
- 34. Van Stempvoort, D., Evert, L., Wassenaar, L., 1993. Aquifer vulnerability index: a GIS compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal, 18: 25-37.
- 35. Vías, J.M., Andreo, B., Perles, M.J., Carrasco, F., 2005. A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environmental Geology, 47: 586-595.
- 36. Vías, J.M., Andreo, B., Perles, M.J., Carrasco, F., Vadillo, I., Jiménez, P., 2006. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Application in two pilot sites in Southern Spain. Hydrogeology Journal, 14: 912-925.
- 37. Vrba, J., Zaporozec, A., 1994. Guidebook on mapping groundwater vulnerability. IAH - International Contribution to Hydrogeology 16, Heise, Hannower, Germany.
- 38. Witczak, S., Duda, R., Zurek, A., 2007. The Polish concept of groundwater vulnerability mapping. In: Groundwater Vulnerability Assessment and Mapping. (eds. A.J. Witkowski, A. Kowalczyk and J. Vrba): 45-59. Selected papers from the Groundwater Vulnerability Assessment and Mapping International Conference, Ustron, Poland, 2004.
- 39. Wang, Y., Merkel, B.J., Li, Y., Ye, H., Fu, S., Ihm, D., 2007. Vulnerability of groundwater in Quaternary aquifers to organic contaminants: a case study in Wuhan City, China. Environmental Geology, 53: 479-484.
- 40. Zuquette, L.V., Palma, J.B., Pejon, O.J., 2009. Methodology to assess groundwater pollution conditions (current and pre-disposition) in the Sao Carlos and Ribeiräo Preto regions, Brazil. Bulletin of Engineering Geology and the Environment, 68: 117-136.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56ade806-594a-4242-9d51-10c0a6e20651