PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of the Cavity Damping on Vehicular Evaluation using the Finite Element Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work focuses on finding a numerical solution for vehicle acoustic studies and improving the usefulness of the numerical experimental parameters for the development stage of a new automotive project. Specifically, this research addresses the importance of modal cavity damping for vehicle exerts during numerical studies. It then seeks to suggest standardized parameter values of modal cavity damping in vehicular acoustic studies. The standardized value of modal cavity damping is of great importance for the study of vehicular acoustics in the automotive industry because it would allow the industry to begin studies of the acoustic performance of a new vehicle early in the conception phase with a reliable estimation that would be close to the final value measured in the design phase. It is common for the automotive industry to achieve good levels of numerical-experimental correlation in acoustic studies after the prototyping phase because this phase can be studied with feedback from the simulation and experimental modal parameters. Thus, this research suggests values for modal cavity damping, which are divided into two parts due to their behaviour: ξ(x) = −0.0126(x − 100) + 6.15 as a variable function to analyse up to 100 Hz and 6.15% of modal cavity damping constant for studies between 30 Hz and 100 Hz. The sequence of this study shows how we arrived at these values.
Rocznik
Strony
87--97
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr., fot.
Twórcy
  • Department of Mechanical Engineering, Pontifical University Catholic, Av. Dom José Gaspar, 500, Belo Horizonte, Brazil
  • Department of Mechanical Engineering, Pontifical University Catholic, Av. Dom José Gaspar, 500, Belo Horizonte, Brazil
autor
  • Department of Mechanical Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627 – Pampulha, Belo Horizonte, Brazil
  • Department of Mechanical Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627 – Pampulha, Belo Horizonte, Brazil
Bibliografia
  • 1. Braess H.H., Seiffert U. (2005), Handbook of Automotive Engineering, 1st ed., Ed. Hans-Hermann Braess, USA, Pennsylvania, pp. 67–69.
  • 2. Cameron C.J., Wennhage P., Göransson P. (2010), Prediction of NVH behaviour of trimmed body components in the frequency, Appl. Acoust., 71, 8, 708–721, DOI: 10.1016/j.apacoust.2010.03.002.
  • 3. Davy J.L., Phillips T.J., Pearse J.R. (2014), The damping of gypsum plaster board wooden stud cavity walls, Appl. Acoust., 88, 52–56.
  • 4. Ferreira T.S., Moura F., Magalhões P. (2013), Sensitivity analysis of numerical and experimental comparison by nvh finite element simulation in “trimmed body” to different excitation points of a vehicle in the frequency range until 500 Hz, 22nd International Congress of Mechanical Engineering (COBEM), ISSN 2176-5480, 22, 1842–1849.
  • 5. Hörnlund M., Papazoglu A. (2005), Analysis and measurements of vehicle door structural dynamic response, Master’s Dissertation, Lund University, Sweden.
  • 6. Johnson R., Kuby P. (2007), Applied Example 2.15. The 85th Percentile Speed Limit: Going with 85% of the Flow, [in:] Elementary Statistics (10th ed.), Cengage Learning, p. 102, ISBN 9781111802493.
  • 7. Komzsik L. (2001), MSC. NASTRAN., Numerical User’s Guide, The MacNeal-Schwendler Corporation, Los Angeles, CA, USA.
  • 8. Kumar G., Walsh S.J., Krylov V.V. (2013), Structural – acoustic behaviour of automotive-type panels with dome-shaped indentations, Applied Acoustics, 74, 6, 897–908.
  • 9. Kurosawa Y., Yamaguchi T. (2013), Finite Element Analysis for Damped Vibration Properties of Panels Laminated Porous Media, World Academy of Science, Engineering and Technology, Japan, 7, 2013-06-20, 78.
  • 10. Lim T.C. (2000), Automotive panel noise contribution modeling based on finite element and measured structural-acoustic spectra, Appl. Acoust, 60, 505–519.
  • 11. LMS International (2013), LMS PolyMAX, A Revolution in Modal Parameter Estimation, Leuven, Belgium.
  • 12. Moura F., Ferreira T.S., Danti M., Meneguzzo M. (2012), Numerical and experimental comparison by NVH Finite Element Simulation in “Body in White” of a vehicle in the frequency range until 800 Hz, SAE Technical Paper, 2012-36-0629, DOI: 10.4271/2012-36-0629.
  • 13. Peeters B., Van der Auweraer H., Guillaume P., Leuridan J. (2004), The PolyMAX frequency-domain method: a new standard for modal parameter estimation, Shock and Vibration, 11, 3–4, 396–409.
  • 14. Performance Standard (2004), Vehicle and Shell – Acoustic/vibration transfer functions analysis, Fiat Auto, N.7 – R0151.
  • 15. Pockszevnicki C., Rodrigues E., Ferreira T.S., Barbosa R., Vieira A., Silveira M. (2011), Finite element analysis considering material porosity, SAE Technical Paper 2011-36-0136, DOI: 10.4271/2011-36-0136.
  • 16. Rao, Singiresu (2008), Vibrações Mecânicas, 1st ed., Ed: Pearson, Brasil, Sâo Paulo, pp. 82–85.
  • 17. Zhang W., Vlahopoulos N., Wu K. (2005), An energy finite element formulation for high-frequency vibration analysis of externally fluid-loaded cylindrical shells with periodic circumferential stiffeners subjected to axisymmetric excitation, Journal of Sound and Vibration, 282, 3–5, 679–700, DOI: 10.1016/j.jsv.2004.03.063.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56aa0478-3a08-4cec-864a-4d2af6f58057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.