
INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2016) Vol. 5 (2) 175−184

MODELING THE SOFTWARE TESTING PROCESS TAKING INTO
ACCOUNT THE SECONDARY ERRORS

GUSTAW KONOPACKI

Military University of Technology, Department of Cybernetics,
Institute of Information Systems

It discusses the two formal models of software testing by the concept of a black
box. In the first model assumes a non-zero probability of not removing the detected
error. In the second model assumes also non-zero probability to introduce additional
of error, so-called secondary error. In both cases the systems of Chapman-
Kolmogorov differential equations was formulated. Solving them was obtained
formulas to enable an estimate the expected number of errors remaining in the
software after end of testing and estimation of the expected duration of the process
to complete software testing them.

Keywords: software, software testing, stochastic process

1. Introduction

The testing of a newly developed program, prior to its practical use, is
a commonly followed practice. The program testing process involves the execution
of the program with many sets of input data with the intention of finding errors.
Testing is done to lower the chances of in-service failures which are defined as
an unacceptable departure from a program operation. A long period of testing
results in increasing the chances of detecting program errors and decreasing the
chances of in-service failures, but it also results in increasing the cost of the
program testing process.

176

It is known that testing is the most significant money consuming stage
of the program development. The cost of the program testing process can make 50-
70 percent of the total cost of the program development, especially for complex
program systems [11]. Considering the essential impact of the testing cost on the
whole program development cost, the testing process ought to be prudently planned
and organized. Decisions relative to the testing process organization should be
made on the basis of the results of testing efficiency analysis. In order to make such
an analysis easier it may be convenient to estimate the number of program errors
that could be encountered during the process of program testing. The knowledge
of this estimation makes it possible to evaluate the duration and the cost of the
program testing process, e.g. by means of formal, mathematical expressions. Such
evaluations can be very useful in practice, e.g. for comparing the effectiveness
of different ways of program testing process organizations (i.e. in order to find
an optimal organization).

The number of program errors encountered during the testing process depends
on many factors, such as the testing process organization (which defines the
manner of the testing process realization), the duration of the testing, the testers’
qualifications and professional experience, and the reliability level of the program
at the beginning of the testing process. The duration of the program testing process
can be determined by a time spent on testing activities (it may be
a calendar time or so-called execution time) or by the cardinality of the set of input
data used for the testing. The first way of the two mentioned above is characteristic
for so-called time-domain models of software testing and the other way is specific
to so-called data-domain models [7, 12].

Software testing is a finishing step process of creating systems and
applications. The importance of this step underlines the fact that it plays the role of
one of the key factors influencing the reliability of the software and, indirectly, the
evaluation of the entire system.

Software testing process is not a single act but is an exploded during repetitive
sequence of steps in which, in simple terms, to run this software on a specially
prepared test data, determine whether errors in the software and delete them. The
purpose of each step of testing is to detect as many errors possibly undetected in
previous steps testing and removing as many of the detected errors.

On the longevity the testing process, usually expensive, affect the assessment
criteria obtained level of software reliability. In general, these criteria are formulated
on the basis of software reliability models (the first of which have already appeared
in the 70s of the last century) and were based on an assessment of:

• the expected number of errors remaining in the software at the end of the
next stage of testing,

• the expected length of the segment duration of software testing to detect
another error.

177

Early software reliability models allow the determination of the above-
mentioned size only after the test. This is a significant drawback hinders their use
in planning the testing process, even in the time dimension. Therefore, there are
still attempts to build such models, which would be useful for planning the
software testing process. One such proposal is contained in [4] and is
a generalization of previously published models by Shooman and Jelinki-Moranda.

A very strong assumption, adopted in the model [4] was the assumption that
detect every error is equivalent to its removal. Since, in practice software testing
error detection does not necessarily mean its immediate removal, so getting the
right model [4], would require departure from the assumption. This article
formulated two models that consider the possibility of not removing the detected
error and, even worse, not only not removing the detected error, but the
introduction of additional error during the removal of the previous one.
In both models, the following assumptions about the software testing process,
presented in [4]:

• before testing the software is N errors,
• errors are independent of each other, i.e. the detection and removal of any

of them does not affect the detection of any of the other,
• errors are indistinguishable,
• errors are detected individually,
• at each step of the testing process starts with the simultaneous detection of

all errors currently in the software,
• the testing process is a continuous process over time, and the length of time

ηηηηj elapsed from the moment next error was detected while in the software
still remaining j mistakes is a random variable with exponential distribution
with parameter λλλλj, depending on the number of errors remaining in the
software:

{{{{ }}}} N,...,,j 0,x ,exηP xλ
j i 21,1 ====≥≥≥≥−−−−====<<<< −−−− (1)

• λλλλj for all errors j = 1, 2, ..., N are the same and equal λλλλ .

In addition, pending further models (Model I and Model II) assume the following
assumptions:

• Model I - error detection does not mean the absolute of his removal from of
software, but it can occur with a probability r ∈∈∈∈ [0; 1],

• Model II - error detection does not mean the absolute of his removal from
of software, but it can occur that the with probability q ∈∈∈∈ [0; 1] will be
introduced an additional error, so-called. secondary error.

178

These models test will be used to designate the following most important
characteristics of the software testing process:

• the expected value of the number of errors remaining in the software after
the time t from the start of the test,

• the expected value of time from the start of testing software to stay in the
moment exactly j errors (j = 0, 1, 2, …, N).

2. Model I

Adopting presented assumptions, the software testing process can be
interpreted as a stochastic process (N, T) which denote the number of errors in the
software after the time t from the start of testing this software and it is a Markov
process DC class states - discrete, continuous parameter (time), where
N = {0, 1, 2, ...} is the set of states, and T ∈∈∈∈ [0; ∞∞∞∞) - time.

Based on the assumptions adopted for the considered model can take the
following according to the intensity of the transition between of the states of
process:

.N...,,j jrλrλ

jrλrλ

jj,

jj,

21,

1

====−−−−====

====−−−−
 (2)

Graphical presentation of the transition matrix of the process is shown in Figure 1.

Figure1. Graphical presentation of transition matrix of a stochastic process (N, T)
describing the Model I software testing

To determine the probability distribution vector of the process of finding the

above a particular state after time t of software testing

must solve the following system of differential equations:

(((()))) (((()))) (((()))) (((()))) (((())))tp...,,tp,tp,tptp N0 21====

179

(3)

with the initial conditions

(4)

arising from the fact that, at the start of software testing to contain an N > 0 errors.

The system of equations (3) will be solved using the following generating
function:

(((()))) (((()))) 1.s ,stpts,F
1j

j
j ≤≤≤≤⋅⋅⋅⋅==== ∑∑∑∑

∞∞∞∞

====
 (5)

Using the function (5) the system of equations (3) and making the appropriate

transformations obtained an expression for the probability that after a time t
software testing remain in it the j errors:

(((())))
(((()))) (((())))(((())))









>>>>

====−−−−⋅⋅⋅⋅












====
−−−−−−−−−−−−−−−−

.Nj , 0

N0,1,2,...,j ,e1e
tp

Ntλr1λtr1j
N

jj (6)

Having probability (6) can determine the expected value and variance of the

stochastic process in question, which describe process software testing, ie. the
expected value of the number of errors remaining in the software after its testing by
the time t:

(((())))(((()))) (((())))(((()))) (((()))).e1eNtND ,eNtNE trλtrλ2trλ −−−−−−−−−−−− −−−−⋅⋅⋅⋅====⋅⋅⋅⋅==== (7)

In order to determine the expected time of the software testing until remain in
the j errors (j = 0, 1, 2, …, N), accepted the following submissions.

Let ττττ(i, j) is the random variable defining the residence time of the process
(N, T) in a subset of states of Ni = {j + 1, j + 2, ..., i}, i.e., the transition time of the
process from the state i to the state j. Let theta θθθθ(j) denotes a random variable
defining the process residence time (N, T) in the state j.

(((()))) (((()))) (((())))
(((()))) (((()))) (((()))) (((()))) (((())))

(((()))) (((()))) (((()))) (((()))) (((())))











====−−−−−−−−−−−−====

−−−−−−−−−−−−====
−−−−====

++++ .N2,3,...,j ,tpλr1jtpλr1jtp

...

tpλr1tpλr12tp

tpλr1tp

j1j
'
j

12
'
1

1
'
0

(((())))




====
≠≠≠≠====

N,j 1,
N,j 0,

0p j

180

Having regard to assumption regarding considered model of software testing
as well as using the determination of the residence time homogeneous Markov
process in a given set of states, you can specify the following formulas:

(((()))) (((())))
(((()))) (((()))) (((()))) .N3,...,j2,ji ,j1,iτiθji,τ

1,N0,1,2,...,j ,1jθj1,jτ

++++++++====−−−−++++====
−−−−====++++====++++

 (8)

Knowing that the distribution function of the random variable θθθθ(j) is of the

form (it follows from (1) and (2)):

(((()))){{{{ }}}} .N1,2,...,j ,e1xjθP xjrλ ====−−−−====<<<< −−−− (9)

Assuming i = N and solving the system of equations recursive (8) using (9), and
then calculating the expected value of the ττττ(N, j) random variable is obtained the
expected value of the time that elapses between the beginning of testing until in the
software will remain j of errors will be expressed the formula

(((())))(((()))) ∑∑∑∑
++++====

−−−−========
N

1jk
1.N0,1,2,...,j ,

k
1

rλ
1

jN,τE (10)

3. Model II

Considered further on a model of software testing - in accordance with
adopted earlier assumptions - allows for a situation in which the error detected not
only not will removed, but the from software will be introduced additional
(secondary) error, which means that the number of errors in the software will
increase by 1. Therefore, stochastic process (N, T) specifying the number errors in
software after the time t from the start of testing software can be interpreted as a
stochastic Markov process DC class: states discrete, continuous parameter (time).

Based on the assumptions adopted for the considered model can take the
following according to the intensity of the transition between of the states of
process:

(((())))
(((())))

(((())))λq1jrλ

1,2,...j λ,rq2qrjλ

λ,r1jqµ

1jj,

jj,

1jj,

−−−−====

====−−−−++++−−−−====

−−−−====

−−−−

++++

 (11)

Graphical presentation of the transition matrix of the process is shown in Figure 2.

181

Figure 2. Graphical presentation of transition matrix of a stochastic process (N, T)

describing the Model II software testing

To determine the probability distribution vector of the process of finding the above
a particular state after time t of software testing

() () () (),...tp,tp,tptp 210=

must solve the following system of differential equations:

(12)
with the initial conditions

(13)

arising from the fact that, at the start of software testing to contain an N > 0 errors.

Using the function (5) in the system of equations (12) and making the
appropriate transformations obtained an expression for the expected value of the
process (N, T), i.e. the expected number of errors remaining in the software after
the time t testing this software:

(((()))) (((()))) .eNtN,E λtqr −−−−⋅⋅⋅⋅==== (14)

From formula (14) shows that the number of errors in the software with the passage
of time his testing will be decrease when the following condition will be met:

.qr >

(((()))) (((()))) (((())))
(((()))) (((()))) (((()))) (((()))) (((())))

(((()))) (((()))) (((()))) (((()))) (((()))) (((()))) (((()))) (((()))) (((())))











====−−−−−−−−++++−−−−++++−−−−−−−−++++====

−−−−++++−−−−−−−−====
−−−−====

−−−−++++ 2,3,...j ,tpλq1r1jtpλrq2qrjtpλr1qj1tp

...

tpλrq2qrtpλr1q2tp

tpλr1qtp

1jj1j
'
j

12
'
1

1
'
0

(((())))




====
≠≠≠≠

====
N,j 1,

N,j 0,
0p j

182

Let ττττ(j + i, j) is the random variable defining the residence time of the process
(N, T) in a subset of states of Ni = {j + 1, j + 2, ..., j + i}, i.e., the time that elapses
from the time when the process reached a state j + i until it reaches the state j for
the first time. Let θθθθ(j) means the same variable as in Model I.

In accordance with the assumptions about the model II and the definition of
the residence time Markov process in the specified set of states, you can formulate
the following equality:

• the case when the process (N, T) goes from the state j + 1 to the state j or
from the state j + i to state j + i −−−− 1, which occurs with the probability

then

(((()))) (((())))
(((()))) (((()))) (((()))) 2,3,...i ,j1,ijτijθji,jτ

0,1,2,...j ,1jθ1jj,τ

====−−−−++++++++++++====++++
====++++====++++

 (15)

• the case when the process (N, T) goes from the state j + 1 to the state j + 2
or from the state j + i to state j + i + 1, which occurs with the probability

then

(((()))) (((()))) (((())))
(((()))) (((()))) (((()))) 2,3,...i ,j1,ijτijθji,jτ

0,1,2,...j ,j2,jτ1jθj1,jτ

====++++++++++++++++====++++
====++++++++++++====++++

 (16)

Determination of the expected value of a random variable ττττ(j + i, j) is possible by
solving the following system of algebraic equations:

(((())))(((()))) (((())))(((()))) (((())))
(((()))) (((()))) (((())))(((())))

(((())))(((()))) (((())))(((()))) (((())))
(((()))) (((()))) (((())))(((()))) (((())))

(((()))) (((()))) (((())))(((())))

(((())))(((()))) (((())))(((()))) (((())))
(((()))) (((()))) (((())))(((()))) (((())))

(((()))) (((()))) (((())))(((())))
















====

−−−−++++⋅⋅⋅⋅
−−−−++++−−−−

−−−−++++++++++++⋅⋅⋅⋅
−−−−++++−−−−

−−−−++++++++====++++

++++⋅⋅⋅⋅
−−−−++++−−−−

−−−−++++++++⋅⋅⋅⋅
−−−−++++−−−−

−−−−++++++++====++++

++++⋅⋅⋅⋅
−−−−++++−−−−

−−−−++++++++====++++

3,4,...i

j1,ijτE
q1rr1q

q1r
j1,ijτE

q1rr1q
r1q

ijθEji,jτE

...

j1,jτE
q1rr1q

q1r
j3,jτE

q1rr1q
r1q

2jθEj2,jτE

j2,jτE
q1rr1q

r1q
1jθEj1,jτE

 (17)

(((())))
(((()))) (((()))) ,

q1rr1q
q1r

−−−−++++−−−−
−−−−

(((())))
(((()))) (((()))) ,

q1rr1q
r1q

−−−−++++−−−−
−−−−

183

Since the system of equations (17) is unlimited, for its solution cannot be applied
classical methods of solving algebraic equations limited. In [3] proposed an
iterative method for solving of system of equations (17), permitting to obtain a
satisfactory estimate of the expected value of the random variable ττττ(j + i, j),which
is expressed by the following formula:

(((())))(((()))) (((()))) ∑∑∑∑
====

++++++++========
++++−−−−

≤≤≤≤++++
i

0k
2,...j1,ji 0,1,2,...,j ,

ij
1

λqr
1

ji,jτE
 (18)

Hence, an estimate of the expected value of the time that has elapsed since the start
of testing until the software is error j expresses the relation:

(((())))(((()))) (((()))) ∑∑∑∑
++++====

−−−−====
−−−−

====
N

1jk
1.N0,1,2,...,j ,

k
1

λqr
1

jN,τE
 (19)

4. Conclusions

Formula obtained from the analysis of the presented models of software
testing are consistent with intuition: the higher the intensity λλλλ error detection, and
the greater the probability r to remove the detected error, the shorter the duration of
software testing. The inclusion in the Model II, the probability q introduction of a
secondary error getting the right results achieved and allows you to use them in the
practice of software testing.

Adopted in the article, the parameters λλλλ, r, q, and N are characterized some
aspects of both the process of designing, manufacturing and testing software. The
initial number N of errors in the software will depend crucially on the method and
tools for designing and producing the well-known software complexity. The λλλλ
intensity of the error detection is derived from the method used for software
testing, while the probability r and q characterize the skills and experience of the
team of testers.

Presented the formulas (7), (10), (14) and (19) were obtained on the
assumption that the parameters λλλλ, r, q, and N are fixed, although in practice they
are not usually precisely known and can only be estimated (e.g. [4]), but it does not
call into question the obtained results. In the case where there is a possibility to
determine the probability distribution of the number N of errors in the software
prior to its test as a discrete random variable, as listed formulas has adopted
the form:

184

(((())))(((()))) (((())))

(((())))(((()))) (((())))

(((()))) (((()))) (((())))

(((())))(((()))) (((()))) (((())))∑∑∑∑ ∑∑∑∑

∑∑∑∑

∑∑∑∑ ∑∑∑∑

∑∑∑∑

∞∞∞∞

==== ++++====

∞∞∞∞

====

−−−−

∞∞∞∞

==== ++++====

∞∞∞∞

====

−−−−

−−−−========⋅⋅⋅⋅
−−−−

====

====⋅⋅⋅⋅⋅⋅⋅⋅====

−−−−========⋅⋅⋅⋅====

====⋅⋅⋅⋅⋅⋅⋅⋅====

0n

n

1jk

0n

λtqr

1jk

0n

trλ

1.N0,1,2,...,j ,nNP
k
1

λqr
1

jN,τE

,nNPentN,E

,1.N0,1,2,...,j ,nNP
k
1

rλ
1

jN,τE

,nNPentNE

0n

n

 (20)

In the process of software testing, with the passage of time, all the size
change: decrease N, λλλλ and q, and r is increasing, but in this article includes only a
change in the number of errors in the software. Of course, a similar approach as
above can be used when is possible to estimate distributions of continuous random
variables λλλλ, r, q.

REFERENCES

[1] Feler W. (1996) Wstęp do rachunku prawdopodobieństwa, PWN, Warszawa.

[2] Haggstrom O. (2001) Finite markov chains and algorithmic applications, Chalmers
University of Technology.

[3] Konopacki G., Pluciński I. (1989) O pewnych modelach testowania oprogramowania,
in: Biuletyn WAT w Warszawie, Nr 4/1989, s. 13-23.

[4] Konopacki G., Worwa K. (1984) Uogólnienie modeli niezawodności
oprogramowania Shoomana i Jelinskiego-Morandy, in: Biuletyn WAT w Warszawie,
Nr 12/1984, s. 105-109.

[5] Lawler G.F. (1995) Introduction to Stochastic Processes, Chapman & Hall / CRC.

[6] Mitzenmacher M., Upfal E. (2009) Metody probabilistyczne i obliczenia, WNT,
Warszawa.

[7] Musa J.D., Iannino A., Okumoto K. (1987) Software reliability. Measurement,
prediction, application. McGraw-Hill, Inc.

[8] Norris J. R. (1977) Markov Chains, Cambridge Series in Statistical and Probabilistic
Mathematics.

[9] Papoulis A. (1972) Prawdopodobieństwo, zmienne losowe i procesy stochastyczne,
WNT, Warszawa.

[10] Ross S.M. (1996) Stochastic processes. John Wiley & Sons, New York.

[11] Thayer T.A., Lipov M., Nelson E.C. (1978) Software reliability. North-Holland
Publishing Company. Amsterdam.

[12] Zahedi F., Ashrafi N. (1991) Software reliability based on structure, utility, price and
cost. IEEE Trans. on Software Engrg. Vol.17, No. 4, 345−356.

