INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2016) Vol. b {25-184

MODELING THE SOFTWARE TESTING PROCESS TAKING INTO
ACCOUNT THE SECONDARY ERRORS

GUSTAW KONOPACKI

Military University of Technology, Department oftigynetics,
Institute of Information Systems

It discusses the two formal models of softwareirigsby the concept of a black
box. In the first model assumes a non-zero prothaloif not removing the detected
error. In the second model assumes also non-zetwapility to introduce additional
of error, so-called secondary error. In both cades systems of Chapman-
Kolmogorov differential equations was formulatecoh#g them was obtained
formulas to enable an estimate the expected numbe&rrors remaining in the
software after end of testing and estimation ofdkpected duration of the process
to complete software testing them.

Keywords: software, software testing, stochastacpss

1. Introduction

The testing of a newly developed program, prioritg practical use, is
a commonly followed practice. The program testingcpss involves the execution
of the program with many sets of input data wita thtention of finding errors.
Testing is done to lower the chances of in-serW@kires which are defined as
an unacceptable departure from a program operafiolung period of testing
results in increasing the chances of detecting rarogerrors and decreasing the
chances of in-service failures, but it also resitsncreasing the cost of the
program testing process.

It is known that testing is the most significant mag consuming stage
of the program development. The cost of the progesting process can make 50-
70 percent of the total cost of the program deweknqt, especially for complex
program systemgl1]. Considering the essential impact of the testingt cm the
whole program development cost, the testing proceght to be prudently planned
and organized. Decisions relative to the testingc@ss organization should be
made on the basis of the results of testing effipfeanalysis. In order to make such
an analysis easier it may be convenient to estittetenumber of program errors
that could be encountered during the process ajraro testing. The knowledge
of this estimation makes it possible to evaluak dhration and the cost of the
program testing process, e.g. by means of formathematical expressions. Such
evaluations can be very useful in practice, e.g.clamparing the effectiveness
of different ways of program testing process orgatidns (i.e. in order to find
an optimal organization).

The number of program errors encountered duringe$iing process depends
on many factors, such as the testing process aag@on (which defines the
manner of the testing process realization), thatihur of the testing, the testers’
qualifications and professional experience, andréfiability level of the program
at the beginning of the testing process. The dumatdf the program testing process
can be determined by a time spent on testing &e8vi(it may be
a calendar time or so-called execution time) otheycardinality of the set of input
data used for the testing. The first way of the tmaentioned above is characteristic
for so-called time-domain models of software teg@md the other way is specific
to so-called data-domain modgrs 12].

Software testing is a finishing step process ofating systems and
applications. The importance of this step undeglitne fact that it plays the role of
one of the key factors influencing the reliabilitf/the software and, indirectly, the
evaluation of the entire system.

Software testing process is not a single act baisxploded during repetitive
sequence of steps in which, in simple terms, tothis software on a specially
prepared test data, determine whether errors irsaftervare and delete them. The
purpose of each step of testing is to detect asyreamors possibly undetected in
previous steps testing and removing as many ofi¢iected errors.

On the longevity the testing process, usually esjpen affect the assessment
criteria obtained level of software reliability. ¢@neral, these criteria are formulated
on the basis of software reliability models (thwstfiof which have already appeared
in the 70s of the last century) and were basech@ssessment of:

» the expected number of errors remaining in thenso#t at the end of the

next stage of testing,

» the expected length of the segment duration ofnso# testing to detect

another error.

176

Early software reliability models allow the detenaiion of the above-
mentioned size only after the test. This is a $icgmt drawback hinders their use
in planning the testing process, even in the tinmeedsion. Therefore, there are
still attempts to build such models, which would bseful for planning the
software testing process. One such proposal isacwmd in [4] and is
a generalization of previously published model$Shpoman and Jelinki-Moranda.

A very strong assumption, adopted in the modeWd$ the assumption that
detect every error is equivalent to its removahc8j in practice software testing
error detection does not necessarily mean its ineteedemoval, so getting the
right model [4], would require departure from thesamption. This article
formulated two models that consider the possibititynot removing the detected
error and, even worse, not only not removing theéeated error, but the
introduction of additional error during the removaf the previous one.
In both models, the following assumptions about sloftware testing process,
presented in [4]:

» before testing the softwareNkerrors,

» errors are independent of each other, i.e. thectieteand removal of any

of them does not affect the detection of any ofdter,

 errors are indistinguishable,

» errors are detected individually,

» at each step of the testing process starts witlsitheltaneous detection of

all errors currently in the software,

* the testing process is a continuous process awer, and the length of time

n; elapsed from the moment next error was detecteld whthe software
still remainingj mistakes is a random variable with exponentidtitistion
with parameterd;, depending on the number of errors remaining & th
software:

Pl <x}=1-e74%, x20, j=1,2,..N, (1)

« Aforallerrorg =1, 2, ..., Nare the same and equial

In addition, pending further models (Model | and débll) assume the following
assumptions:
* Model | - error detection does not mean the absadéihis removal from of
software, but it can occur with a probabilit{d [O; 1],
* Model Il - error detection does not mean the alisotd his removal from
of software, but it can occur that the with proligbig O [O; 1] will be
introduced an additional error, so-called. seconéaror.

177

These models test will be used to designate thwilg most important
characteristics of the software testing process:
» the expected value of the number of errors remgiiminthe software after
the time t from the start of the test,
» the expected value of time from the start of tgsoftware to stay in the
moment exactly errors [=0, 1, 2, ..., N).

2. Model |

Adopting presented assumptions, the software tpspnocess can be
interpreted as a stochastic proc@dsT) which denote the number of errors in the
software after the timefrom the start of testing this software and it iMarkov
process DC class states - discrete, continuous mehea (time), where
N ={0, 1, 2, ..} is the set of states, aiid1 [0; o) - time.

Based on the assumptions adopted for the considedztel can take the
following according to the intensity of the traimit between of the states of
process:

Aj,j=1= Irar
,Ij'j=—jr,1r j=1,2,...,N.
Graphical presentation of the transition matrixhaf process is shown in Figure 1.

)

AL A A3z Ajj1 Ajerf

A 1., q..
1,1 Az A

Figurel. Graphical presentation of transition matrix ot@chastic procesd, T)
describing the Model | software testing

To determine the probability distribution vectortbé process of finding the
above a particular state after time t of softwastihg

p(t)=(po(t). pu(t). pa(1). ... o (1))

must solve the following system of differential atjans:

178

po(t)=(1-r)ap, (t)

p(t) = 21-r)ap,(t) - (1-r)2py (1) (3)
pi(t)= i(t-r)apja(t)- i(-r)ap (9, j=23..N.
with the initial conditions
0, j#N,
pj(o)={1’ v @)

arising from the fact that, at the start of softevsting to contain ad > O errors.
The system of equations (3) will be solved using thllowing generating
function:

Ms

F(st)=X p;(t)d . |d=1. (5)

1

Using the function (5) the system of equationsaf®] making the appropriate
transformations obtained an expression for the gty that after a timet
software testing remain in it therrors:

N
—j(-rptfq _ o=(2-r)a N -
pj(t)= (j)}l (1 e) , 1=0,12,...N (6)

0 , j>N.

Having probability (6) can determine the expectatl® and variance of the
stochastic process in question, which describe gssoftware testing, ie. the
expected value of the number of errors remaininténsoftware after its testing by
the timet:

E(N{t)=N"™, D?(N({t)=N@™ (1—e‘”t) @)

In order to determine the expected time of thevgari testing until remain in
thej errors(j =0, 1, 2, ..., N), accepted the following submissions.

Let 1, j) is the random variable defining the residence toh¢he process
(N, T) in a subset of statesNf={j+ 1, j+ 2, ..., I}, i.e., the transition time of the
process from the stafeto the statg. Let thetad]) denotes a random variable
defining the process residence ti(hg T) in the statg.

179

Having regard to assumption regarding consideredemof software testing
as well as using the determination of the residegime homogeneous Markov
process in a given set of states, you can spduifydlowing formulas:

(j+1,j)=0(j+1), j=012..N-1, .
(i, j)=0()+<(i-1,j), i=j+2,j+3,..N. (®)

Knowing that the distribution function of the ramdovariable &j) is of the
form (it follows from (1) and (3)

Plo(j)<x}=1-e "™, j=1,2,..N. 9)

Assumingi = N and solving the system of equations recursiveué)g (9), and
then calculating the expected value of ti, j) random variable is obtained the
expected value of the time that elapses betweebabimning of testing until in the
software will remairj of errors will be expressed the formula

E((N,)= % % i=0,1,2,. .N-1. (10)

3. Model Il

Considered further on a model of software testinip -accordance with
adopted earlier assumptions - allows for a sitmaitiowhich the error detected not
only not will removed, but the from software wille bintroduced additional
(secondary) error, which means that the numberrafre in the software will
increase by 1. Therefore, stochastic pro¢iissl) specifying the number errors in
software after the timefrom the start of testing software can be intdgueas a
stochastic Markov process DC class: states disaretginuous parameter (time).

Based on the assumptions adopted for the considedstel can take the
following according to the intensity of the trammit between of the states of
process:

e = ja(1-r)a,
4y==ilr+a-2ra)s, j=12,. (11)

Ajj=r (1-q)a

Graphical presentation of the transition matrixtaf process is shown in Figure 2.

180

A0 Az As2 Ajj1 Afe14

ALl A2 A

Figure 2. Graphical presentation of transition matrix ot@chastic proceg, T)
describing the Model Il software testing

To determine the probability distribution vectortbé process of finding the above
a particular state after time t of software testing

olt)=(po(9).0.(0). (1))
must solve the following system of differential atjans:

polt)=dL-r)ipy(t)

pu(t)= 2oL~ 1) p, (t) - (r+a-2ra)py 1)

p (t)=(1+) d1-r)apjua(t)- i (r+a-2ra)ap; (1) + (i-2)r(1-a)apa (). j=2.3..
(12)
with the initial conditions

0, j#N,
pj (O)={1’ ;: N, (13)

arising from the fact that, at the start of softevsting to contain ad > O errors.

Using the function (5) in the system of equatiod®)(and making the
appropriate transformations obtained an expreswiomhe expected value of the
procesgN, T), i.e. the expected number of errors remaininghan goftware after
the time t testing this software:

E(N,t)= Nz (14)

From formula (14) shows that the number of errorthe software with the passage
of time his testing will be decrease when the faltay condition will be met:
r>q.

181

Let 7(j +1,]) is the random variable defining the residence twhehe process
(N, T) in a subset of statesbf={j + 1, j+ 2 ..., j+i}, i.e., the time that elapses
from the time when the process reached a gtaieuntil it reaches the stajdfor
the first time. Letdj) means the same variable as in Model I.

In accordance with the assumptions about the mibdeid the definition of
the residence time Markov process in the specatdf states, you can formulate
the following equality:

* the case when the procdd§ T) goes from the staget+ 1 to the statg or
from the statg¢ + i to statg + i — 1, which occurs with the probability

r(1-q)
q(1-r)+r(1-q)’

then
o(j, j+1)=0(j+1), j=01.2,.
w(j+i j)=0(j+i)+z(j+i-1,j), i=23,.. (15)

« the case when the procgdy T) goes from the stafet 1 to the statg + 2
or from the stat¢+i to statg + i + 1, which occurs with the probability
ofL-r)
q(1-r)+r(1-q)

then

w(j+1,j)=0(j+1)+«(j+2.j), j=012,..
w(j+i j)=0(j+i)+z(j+i+1,j), i=23,.. (16)

Determination of the expected value of a randonmabde 7(j + i, j) is possible by
solving the following system of algebraic equations

el =l i+ o0 (o2

el =l i g o) elelisaille Ul)

Elef) S PR e N) P o U (SR

1-r)+r{1-

i=3,4,...
(17)

182

Since the system of equations (17) is unlimited,it® solution cannot be applied
classical methods of solving algebraic equatiomsitéid. In [3] proposed an
iterative method for solving of system of equati¢fg), permitting to obtain a
satisfactory estimate of the expected value ofrémelom variabler(j + i, j),which

is expressed by the following formula:

oD Sy 17002 iTibieze

Hence, an estimate of the expected value of the tivat has elapsed since the start
of testing until the software is errorj expres&&srelation:

=0,1,2,..N-1.
()}“kﬁk (19)

4. Conclusions

Formula obtained from the analysis of the presemexiels of software
testing are consistent with intuition: the highlee intensityA error detection, and
the greater the probabilityto remove the detected error, the shorter thetiduraf
software testing. The inclusion in the Model llg throbabilityq introduction of a
secondary error getting the right results achiewvad allows you to use them in the
practice of software testing.

Adopted in the article, the parameteksr, g, andN are characterized some
aspects of both the process of designing, manufagtand testing software. The
initial numberN of errors in the software will depend crucially the method and
tools for designing and producing the well-knowrftware complexity. Thed
intensity of the error detection is derived frone tmethod used for software
testing, while the probability andq characterize the skills and experience of the
team of testers.

Presented the formulas (7), (10), (14) and (19)ewebtained on the
assumption that the parametdrs, g, andN are fixed, although in practice they
are not usually precisely known and can only beneded (e.g. [4]), but it does not
call into question the obtained resulis.the case where there is a possibility to
determine the probability distribution of the numlidé of errors in the software
prior to its test as a discrete random variableligtied formulas has adopted
the form:

183

E(r(N,j)):%i > ~P(N=n), j=012,.N-1,
(20)

E(T(N,j))=ﬁﬁ§ y fp(N=1), j=0,12..N-1.

n=0k=j+1k

In the process of software testing, with the passafytime, all the size

change: decreasé¢, A andg, andr is increasing, but in this article includes only a
change in the number of errors in the softwarec@frse, a similar approach as
above can be used when is possible to estimatibdisdns of continuous random
variablesi, r, q.

REFERENCES

[1]
(2]

[3]
[4]
[5]
[6]
[7]
(8]
9]

[10]
[11]

[12]

Feler W. (1996Wskp do rachunku prawdopodoligtwg PWN, Warszawa.

Haggstrom O. (2001Finite markov chains and algorithmic applicatiorGhalmers
University of Technology.

Konopacki G., Pludiski I. (1989)0O pewnych modelach testowania oprogramowania
in: Biuletyn WAT w Warszawie, Nr 4/1989, s. 13-23.

Konopacki G., Worwa K. (1984) Uogdlnienie modeli niezawodsm
oprogramowania Shoomana i Jelinskiego-Morandy Biuletyn WAT w Warszawie,
Nr 12/1984, s. 105-109.

Lawler G.F. (199bIntroduction to Stochastic Process&@hapman & Hall / CRC.

Mitzenmacher M., Upfal E. (2009\Metody probabilistyczne i obliczenidVNT,
Warszawa.

Musa J.D., lannino A., Okumoto K. (1988oftware reliability. Measurement,
prediction, applicationMcGraw-Hill, Inc.

Norris J. R. (1977Markov Chains Cambridge Series in Statistical and Probabilistic
Mathematics.

Papoulis A. (1972Prawdopodobigstwo, zmienne losowe i procesy stochastyczne
WNT, Warszawa.

Ross S.M. (1996%tochastic processedohn Wiley & Sons, New York.

Thayer T.A., Lipov M., Nelson E.C. (1978oftware reliability North-Holland
Publishing Company. Amsterdam.

Zahedi F., Ashrafi N. (19919oftware reliability based on structure, utilityrige and
cost IEEE Trans. on Software Engrg. Vol.17, No. 4, 33%6.

184

