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ELEMENTARY OPERATORS -
STILL NOT ELEMENTARY?
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Abstract. Properties of elementary operators, that is, finite sums of two-sided multiplications
on a Banach algebra, have been studied under a vast variety of aspects by numerous authors.
In this paper we review recent advances in a new direction that seems not to have been
explored before: the question when an elementary operator is spectrally bounded or spectrally
isometric. As with other investigations, a number of subtleties occur which show that
elementary operators are still not elementary to handle.
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1. INTRODUCTION

Throughout we shall denote by A a unital Banach algebra over the complex field C.
A linear mapping S: A — A is said to be an elementary operator if there exist
Q1y...y0n,b1,...,b, € A such that Sz = Z?zl a;jxb; for all x € A. Numerous
properties of elementary operators have been studied by a variety of authors over many
decades; among them are a detailed analysis of their spectra; their Fredholm properties;
compactness, weak compactness and related properties such as strict singularity; norm
properties; positivity (where appropriate); etc., etc. The two proceedings volumes [17]
and [12] contain a wealth of references and several survey articles.

Despite their seemingly simple definition elementary operators often exhibit a some-
what intricate behaviour and many rather straightforward questions are hard to answer
or even lead to open problems. On the other hand, various classes of more general
operators can be approximated by elementary operators, see, e.g., [2, Chapter 5].
Therefore it appears well worth to continue to study this class of operators.

In this short note we focus on recent results that provide criteria when an elementary
operator is spectrally bounded or spectrally isometric (for the definitions, see below).
The aim is to illustrate the question in the title: why elementary operators still resist
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a smooth, general theory and which special methods need to be applied depending on
the problems one intends to tackle.

2. SPECTRALLY BOUNDED OPERATORS

Let A and B be unital, complex Banach algebras and £ C A be a closed subspace.
A linear mapping T': E — B is called spectrally bounded if there is M > 0 such that
r(Tz) < M r(x) for all z € E, where 7(-) denotes the spectral radius. These operators
are abundant:

Example 2.1.

(i) Every Jordan epimorphism is spectrally bounded.

(ii) The trace on M, (C) is spectrally bounded.

(iii) If A = C(X), every bounded operator is spectrally bounded.

(iv) Myp: A — A, x — axb is spectrally bounded if and only if ba is central modulo
the radical [28].

The last-quoted paper [28] by Ptdk is one of many articles by a variety of authors
in which the origins of spectrally bounded operators can be found. The concept
itself was introduced in [18] with the goal to unify various ideas and to progress
towards a more systematic treatment which was then started in [22]. Ptdk’s aim was
“...to present...an extension to noncommutative algebras of the classical results of
I. M. Singer and J. Wermer about derivations.” (quoted from [28]). In the course of
this, he showed the following. Let L,: A — A and R,: A — A denote & — ax and
T — xa, respectively; that is, the left and the right multiplication, respectively, by
a € A. Then xza — ax € rad(A), the Jacobson radical of A, for all x € A if and only if
r(ax) <r(a)r(z) for all x € A; the latter condition is easily seen to be equivalent to
spectral boundedness of L, and, since r(ax) = r(za) for all x, equally equivalent to
spectral boundedness of R,,. It follows, see also [11], that the inner derivation R, — L,
maps A into its radical rad(A) if and only if it is spectrally bounded. In fact, it was
shown in [9] that an arbitrary (not necessarily continuous) derivation d on A maps into
rad(A) if and only if d is spectrally bounded. This allows for an alternative formulation
of the noncommutative Singer—-Wermer conjecture which is still an open problem; for
more details, see [21].

In general the relation of a linear mapping, such as a derivation, to the ideal
rad(A) can be quite delicate. But since it does not carry any spectral information
(for all z € A, r(x) = r(xz +rad(A))) and rad(A) is invariant under every elementary
operator, we can, and will, henceforth assume that A is semisimple, that is, rad(A4) = 0.
Therefore, with the notation of Example 2.1 (iv) above, M, = LRy, we have the
first and most basic result on spectral boundedness of an elementary operator.

Proposition 2.2. Let A be a unital semisimple Banach algebra. Let a,b € A. Then
M, p is spectrally bounded if and only if ba € Z(A), the centre of A.

This follows now immediately from Pt&k’s result and the fact that r(axb) = r(bax)
for all x € A. Despite the fact that this is a very basic observation, its proof is
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not entirely trivial and needs both the subharmonicity of the spectral radius as well
as Jacobson’s density theorem applied to the induced two-sided multiplication in
irreducible representations of A.

Unless the domain of T is contained in C'(X), for a compact Hausdorff space X,
compare Example 2.1 (iii) above (so that spectral radius and norm coincide), there is
no relation between boundedness and spectral boundedness of the linear mapping 7" in
general. An important result due to Aupetit [3, Theorem 5.5.2], which was used in [5]
to determine the separating space of Lie homomorphisms, states that every spectrally
bounded operator onto a semisimple Banach algebra is automatically bounded.

A Jordan homomorphism is a linear mapping T: A — B such that T'(2?) = (T'z)?
for all z € A. It follows that T preserves the Jordan product zoy = %(wy—l—yaz), z,y € A
A purely algebraic property of a Jordan epimorphism 7' (that is, a surjective Jordan
homomorphism) is that 71 = 1 and Tz is invertible in B for every invertible z € A.
Therefore, every Jordan epimorphism 7' is a spectral contraction (i.e., 7(Tz) < r(x)
for all z € A), compare with Example 2.1 (i) above. Various conditions on the domain
algebra imply that Jordan epimorphisms are the only surjective spectrally bounded
operators. Here is a sample.

Theorem 2.3 ([23]). Let A be a properly infinite von Neumann algebra. Let T: A — B
be a unital spectrally bounded operator onto a semisimple unital Banach algebra B.
Then T is a Jordan epimorphism.

The absence of finite traces on A is decisive in the above result, which also holds for
unital purely infinite C*-algebras of real rank zero [16]. In fact, in [19], we formulated
the following, still open problem.

Problem 2.4. Let A be a unital C*-algebra without tracial states. Is every unital
spectrally bounded operator from A onto a semisimple unital Banach algebra B
a Jordan epimorphism?

Traces are natural candidates for spectrally bounded operators; cf. Example 2.1 (ii)
above. For finite-dimensional algebras, the situation is rather clear.

Proposition 2.5. Let T: M,(C) — M,(C) be a unital surjective linear mapping.
Then T is spectrally bounded if and only if there are a constant v > 0 and a Jordan
automorphism S on M, (C) such that Tx = v Sz + (1 — ) tr(x) for every x € M,(C),
where tr stands for the normalised trace on M, (C).

A proof of this result can, e.g., be found in [21]. For infinite-dimensional algebras
with “similar properties” as M,,(C), the situation appears to be far more complicated.
The following open question was raised in [21].

Problem 2.6. Does the statement of Proposition 2.5 extend to the case where M, (C)
is replaced by a type II; factor A and the trace is the unique normalised trace on A?



790 Martin Mathieu

3. SPECTRAL ISOMETRIES

Isometries are the best-behaved bounded linear operators. Hence, there is a vast
literature and a lot of structural information available on them; see, e.g., [13] and [14].
Defining a spectral isometry as a linear operator T: A — B with the property
r(Tz) = r(z) for all x € A, would one not expect a similar amount of detailed
information for spectral isometries? Clearly, by the above discussion, every Jordan
isomorphism (i.e., bijective Jordan homomorphism) preserves invertibility in both
directions and thus is a unital surjective spectral isometry. It follows easily from
Proposition 2.6 that every unital surjective spectral isometry 7': M,,(C) — M, (C)
is a Jordan isomorphism; see [21] and, for an independent argument, [4]. One can
deduce from this that a unital spectral isometry from a finite-dimensional semisimple
Banach algebra onto a semisimple unital Banach algebra has the same property; but
this requires some more work, see [24]. In fact, there is a general conjecture which we
first posed at the Banach algebra conference in Odense in 2001.

Problem 3.1. Let A and B be unital C*algebras. Let T: A — B be a unital
surjective spectral isometry. Does it follow that 7" is necessarily a Jordan isomorphism?

This conjecture is modelled after Kadison’s well-known extension of the
Banach—Stone theorem, [15], stating that, when T: A — B is a surjective linear
isometry between two unital C*-algebras A and B, then T'1 is a unitary in B and
the mapping x + (T1)"'Tx, x € A is a Jordan *-isomorphism (that is, it preserves
additionally selfadjoint elements). Very recently the first part of Kadison’s theorem
has been established in full for arbitrary Banach algebras.

Proposition 3.2 ([26]). Let A and B be unital semisimple Banach algebras. Let
T: A — B be a surjective spectral isometry. Then T1 belongs to the centre of B and
its spectrum lies in the unit circle in C (that is, is a unitary in the Banach algebra
sense).

Resulting from this, for every surjective spectral isometry T', z + (T1) " 'Tx, z € A
is a unital surjective spectral isometry, so one can always make this assumption without
restricting the generality. We also note that every spectral isometry with semisimple
domain is injective; this has been recorded in many places, e.g., [22] or [25].

Evidently all structural results for unital spectrally bounded operators yield (partial)
answers to the above Problem 3.1. Here we record a result that was obtained in a
different way and hence is special to spectral isometries.

Theorem 3.3 ([25]). LetT: A — B be a unital surjective spectral isometry between the
unital C*-algebras A and B. Suppose that A is separable and has Hausdorff spectrum.
Then T is a Jordan isomorphism.

There is also some evidence that Problem 3.1 could have an affirmative answer
for all semisimple Banach algebras; see, e.g., [1] and [10]. In general, however, the
question is wide open and one might therefore try to find a counterexample. This was
the motivation for the studies in [27] since elementary operators are given in a concrete
way and therefore might be easier to handle.



Elementary operators —still not elementary? 791

4. ELEMENTARY OPERATORS

Let &(A) denote the algebra of all elementary operators on the unital Banach algebra A.
Every S € &(A) is of the form S = >0, My, for n-tuples a = (a1,...,an),
b= (b,...,b,) € A™. We will abbreviate this fact by S = S, p whenever convenient.
However, such a representation as a sum of two-sided multiplications is by no means
unique. Therefore, in order to have some sort of invariant, we introduce the length of S,
£(S), as follows. If S = 0 then £(S) = 0. If S # 0 then ¢(S) is the smallest n € N such
that S can be written as a sum of n two-sided multiplications. We shall denote the
set of all elementary operators of length at most n by &,,(A). A necessary condition
for £(S) = n is that, in the representation S = Z?Zl Mg, p;, the sets {ai,...,an}
and {b1,...,b,} individually are linearly independent. For certain algebras A, for
instance if A is an irreducible algebra of bounded linear operators on a Banach space,
this condition is also sufficient. The main question we shall pursue in this section is
which sets of coefficients a, b will give us spectrally bounded and spectrally isometric
elementary operators.
The following result from [8] extends the necessary condition in Proposition 2.2.

Proposition 4.1. Let A be a semisimple unital Banach algebra. Let S = Sq p € &p(A)
be spectrally bounded. Then 377_, bja; € Z(A), the centre of A.

Clearly this condition is not sufficient. For example, L, — R, is spectrally bounded
on a semisimple Banach algebra A if and only if L, — R, = 0, equivalently, a € Z(A);
see the discussion in Section 2 and [11]. However a — a € Z(A) for every a € A.

The following sufficient condition for spectral boundedness was obtained in
[8, Corollary 2.6] on the basis of results in [7].

Proposition 4.2. Let A be a semisimple unital Banach algebra. Let S € &,(A) and
suppose that S = Sq p with bja; € Z(A) for all 1 <i <n and bja; =0 for all i < j.
Then S is a spectrally bounded.

The conditions in the above result in particular imply that each two-sided mul-
tiplication My, », in the representation S = Z;—;l M, b, is spectrally bounded and
there is some “orthogonality” between their ranges. However, the conditions are not
necessary: by [11], L, — Ry = My 1 — My is spectrally bounded if and only if both a
and b are central while the condition stated in Proposition 4.2 clearly fails.

So far, necessary and sufficient conditions for S € &(A) to be spectrally bounded
in general are only known if £(S) < 2; see [6]. In the remainder of this article, we
will discuss the results obtained in [27] for the case £(S) = 3. As it turns out, the
additional assumption that S is unital changes the picture drastically.

Going back to ¢(S) = 1, i.e., S = M, 4, the hypothesis S1 = 1 together with S
spectrally bounded immediately entails that a is invertible with b = a~!. Indeed,
ab = 1 yields aba = a which, as ba € Z(A) by Propostion 2.2, implies ba?> = a.
Upon multiplying by b on the right we have ba?b = ab=1so ba = 1 and b = a~*.
As a consequence, we note the following.
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Proposition 4.3 ([27, Proposition 3.1]). Let A be a unital semisimple Banach algebra
and let a,b € A. The following conditions are equivalent:

(a) Mg is unital and spectrally bounded;
(b) Mgy is a unital spectral isometry;
(c) a is invertible with b= a~1.

In each case, M,y is automatically surjective.

This result extends to length 2 as follows; note that surjectivity is no longer
automatic. Combining Theorem 4.2 with Proposition 4.3 in [27] we have the following
description.

Theorem 4.4. Let A be a semisimple unital Banach algebra. Suppose S € &5(A) is
unital. The following conditions are equivalent.

(a) S is spectrally bounded;
(b) S is spectrally isometric;
(¢) S is multiplicative.

Moreover, S is surjective if and only if biay + baas = 1.

The method of proof involves studying the behaviour of S in primitive quotients.
Let P C A be a primitive ideal in A. Let S € &,,(A). As SP C P we obtain an
induced elementary operator Sp € &,,(A/P) via Spx? = (Sz)F, where ¥’ = x + P
denotes the coset of € A. Clearly, if S = Sqp then Sp = Sur pr, and S is unital if
and only if Sp is unital for every primitive ideal P. As A/P is an irreducible algebra
of operators on some Banach space F, we have more tools available such as Jacobson’s
density theorem [3, Theorem 4.2.5] and Sinclair’s addendum for invertible elements
[3, Corollary 4.2.6] which allow us to control the behaviour of the coefficients of Sp.
Since A is semisimple, we can piece the information from the quotients A/P together
to obtain a global description. For the details, see [6-8].

It turns out that, even for arbitrary length, the sufficient conditions in Proposi-
tion 4.2 together with the assumption of preserving the identity have strong conse-
quences.

Theorem 4.5 ([27, Theorem 4.4]). Let A be a semisimple unital Banach algebra. Let
S € &n(A) be unital. Suppose that S = Sq p with e; =bja; € Z(A) for alll1 <i<n
and bja; =0 for alli < j. Then S is a spectral isometry. Moreover, the following are
equivalent:

(a) S is surjective.
(b) >r e =1.
(c) 8= M, -1 for an invertible element w € A.

We will sketch the proof of the first part of the statement in the case £(S) = 3
in order to illustrate the techniques and afterwards show the limitations making it
difficult to move on to if-and-only-if conditions for longer length, at least at present.
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Starting from the main additional assumption, S1 = 1, we have in succession the
following identities:

Clel + a2b2 —+ a3b3 = ].,
aibiag + agbaas + asbsas = as,

baasbras = baas,

that is, eo = boas is a central idempotent. Similarly, upon multiplying the first identity
above on the left by b; we obtain byai1b; = by so that e; = bya; is a central idempotent
and by = e1b;. In a similar vein, es = bzag is a central idempotent with as = ezas. Let
P be a primitive ideal of A. For all 1 <i < 3, el € {0,1} since Z(4/P) = C1. An
inspection of the proof of Proposition 4.2 shows that r(Spz’) < r(2F) forallz € A
(as the “constant of spectral boundedness” depends on r(ef’) which is at most 1). Since
r(y) = supp r(yF) for each y € A, [3, Theorem 4.2.1], we find that r(Sz) < r(x) for
all . Thus, in order to conclude that S is a spectral isometry, it suffices to prove the
reverse inequality.

Before proceeding to this step we note a very useful matrix notation for the elemen-
tary operator S. Considering A as a closed subalgebra of M3(A) via the embedding

we have, for every z € A,

3 . .
T(Sx):r( 8 § § >T<(2j—10aﬂ?b] 8 )
0
0
T
0

by 0 O a1 as as T
:7'( b o ollo o o]]o )

b3 0 O 0 0 O 0

blal 0 0 0 0

z 0

0 =x

T

:7‘( byai boas 0 | [0

b3a1 bgag b3a3 0
eix 0 0
:r( boarx  esx 0
bsaix bsasxr es3x

To continue the argument, once again we take a primitive ideal P of A and aim to
show that r(Spz?) > r(z¥) for all x € A. We distinguish the various combinations
which can occur from the fact that e’ € {0,1}. If at least two of the e;’s are zero the
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elementary operator, Sp reduces to a two-sided multiplication which we already dealt
with. If e; = 1 for all ¢ then b;a; = 0 for all i # j. For example, we have in succession

a1b1 + a2b2 + 0,31)3 = 1,
baaibiar + baasbaar + baasbsa; = beay,

baay + baay = baay,

wherefore boa; = 0. As a result, the above matrix calculation applied to Sp yields
r(Spxf) = r(xf) for all x € A. If el = 0 or e} = 0 then Sp is of length at most 2
and Theorem 4.4 applies. As e; = 0 for all ¢ is impossible (since Spl = 1) the only
case left is el = e’ = 1 and ef = 0. This is the most interesting case, as we shall see
below in Example 4.6.

Under this assumption, for every A € C, we have

aP 0 0 A—aP 0 0
A— [ oFalz? 0 0 | =[-tLalzt A 0
blalzt vlalzt 2P —blalzt  —blalzt N —af

Let A € o(z®) be such that |A| = r(xf). Then X belongs to the left approximate point
spectrum of 2’ and thus there is a sequence (y!'),en of unit elements in A/P with
the property (A —z7)yL — 0 (n — o0). As this entails that

A —af 0 0 0 0 0
—bbalzt A 0 0 0 0] —0,
—blalzt  —bPalzt X —af y? 0 0

we conclude that r(Spaf) > |A\| = r(z¥). Consequently, in each of the above cases,
for every z € A, 7(Sx) > r(aF) for all P and thus r(Sz) > r(z) which is the desired
estimate.

The second part of the theorem requires a subtle recursion argument for the
coefficients of S; see [27, Theorem 4.4]. It is interesting that the surjectivity forces
the elementary operator to be of length one. Without the surjectivity assumption, a
length-three elementary operator which is both unital and spectrally isometric does
not have to be multiplicative or even a Jordan homomorphism, in contrast to shorter
length (Proposition 4.3 and Theorem 4.4). This is in accordance with the general
conjecture (Problem 3.1); we will now supply a concrete example, taken from [27],
illustrating that, even for elementary operators, the situation is rather delicate.

Example 4.6. Let A = Z(¢?) and take two isometries s;, sy in A such that
8187 + 8985 = 1 (which in particular implies that s; and sy have orthogonal ranges).
This can always be done by writing ¢ = ¢2 @ ¢? and letting s; be the isometric
isomorphism with the first component and sy the isometric isomorphism with the
second component (so that s;s¥, ¢ = 1,2 are the corresponding orthogonal projections).
Let T = Msl,s; + Ms2’S; which is a length-two unital elementary operator on A
(€(T) = 2 since {s1, s2} is linearly independent). It is easily seen that T is an isometry
and multiplicative, cf. [27, Example 2.4], and hence a spectral isometry.
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We now alter T to obtain a length-three elementary operator as follows. Take
zGA,z#Owitth:Oandputal:51, ag = S22, a3 = S2, by = 57, by = 257
and by = s3. It is readily verified that {a1,as2,as} is linearly independent and so is
{b1,b2,b3}. Consequently ¢(S) = 3. Moreover, b;a; € C1 for all 1 <¢ < 3, ba; =0 for
all 1 <i < j <3, and S1 = 1. By Theorem 4.5, it follows that S is a unital spectral
isometry. In the notation of the above theorem, e; = e3 = 1 while e5 = 0. Therefore,
S is not surjective.

In order to show that S is not a Jordan homomorphism we need to produce =z € A
such that (Sz)? — S(z?) # 0. Since 22 = 0 and 2 # 0 there is € €2 such that {n, 2n}
is linearly independent. Put £ = s1n and note that s7¢ = 7. Take x € A such that
xn =0 and zzn = n. We compute

((Sz)? — S(2%))€ = sozwzmsié + soxzmzsié = son # 0,

as all the other terms cancel each other out or vanish and s, is an isometry. O

On the other hand, this example entirely relies on the non-surjectivity of the
elementary operator used as the next result shows.

Theorem 4.7 ([27]). Let A be a unital C*-algebra. Then every unital surjective
S € &3(A) which is spectrally isometric is an algebra automorphism of A.

Key to this theorem is a necessary condition for spectrally isometric length-three
elementary operators valid in irreducible representations of high enough dimension
which is not available for longer length, see [27] and [8], whereas low finite dimensions
are taken care of by Proposition 2.5. At this moment is it unclear what a sufficient
and necessary condition for an elementary operator of arbitrary length to be spectrally
isometric could look like.
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