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ON THE CROSSING NUMBERS OF JOIN PRODUCTS
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Abstract. The crossing number cr(G) of a graph G is the minimum number of edge crossings
over all drawings of G in the plane. The main aim of the paper is to give the crossing number
of the join product W4 + Pn and W4 + Cn for the wheel W4 on five vertices, where Pn and
Cn are the path and the cycle on n vertices, respectively. Yue et al. conjectured that the
crossing number of Wm + Cn is equal to Z(m + 1)Z(n) + (Z(m)− 1)

⌊
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⌉
+ 2, for

all m, n ≥ 3, and where the Zarankiewicz’s number Z(n) =
⌊

n
2

⌋⌊
n−1

2

⌋
is defined for n ≥ 1.

Recently, this conjecture was proved for W3 + Cn by Klešč. We establish the validity of this
conjecture for W4 + Cn and we also offer a new conjecture for the crossing number of the
join product Wm + Pn for m ≥ 3 and n ≥ 2.
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1. INTRODUCTION

For the first time, P. Turán [26] described the brick factory problem. He was forced to
work in a brick factory and his job was to push a wagon-load of bricks along a track
from a kiln to storage site. The factory contained several kilns and storage sites, with
tracks criss-crossing the floor among them. Turán found it difficult to push the wagon
across a track crossing, and in his mind he began to consider how the factory might
be redesigned to minimize these crossings. Since then, the topic has steadily grown
and the crossing number research has become entrenched as one of the core areas
in topological graph theory. The problem of reducing the number of crossings is of
interest in many areas. One of the most popular areas is VLSI-layout implementation
of which revolutionized circuit design and had a strong impact on parallel computing.
The crossing numbers have been also studied to improve the readability of hierarchical
structures and automated graph drawings. The visualized graph should be easy to
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read and understand. For the sake of clarity of the graphical drawings, the reducing of
crossings is probably the most important.

The crossing number cr(G) of a simple graph G with the vertex set V (G) and
the edge set E(G) is the minimum possible number of edge crossings in a drawing
of G in the plane. (For the definition of a drawing see [12].) It is easy to see that
a drawing with minimum number of crossings (an optimal drawing) is always a good
drawing, meaning that no edge crosses itself, no two edges cross more than once, and
no two edges incident with the same vertex cross. Let D (D(G)) be a good drawing of
the graph G. We denote the number of crossings in D by crD(G). Let Gi and Gj be
edge-disjoint subgraphs of G. We denote the number of crossings between edges of Gi

and edges of Gj by crD(Gi, Gj), and the number of crossings among edges of Gi in D
by crD(Gi). It is easy to see that for any three mutually edge-disjoint subgraphs Gi,
Gj , and Gk of G, the following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj),

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk).

It is well known that computing the crossing number of a graph is an NP-complete
problem by Garey and Johnson [7]. The exact values of the crossing numbers are
known only for some graphs or some families of graphs. In [9, 10], Ho gave the
characterization for a few multipartite graphs. The purpose of this article is to extend
the known results concerning this topic for the wheel W4 on five vertices based on
its isomorphism with the complete tripartite graph K1,2,2. The join product of two
graphs Gi and Gj , denoted Gi + Gj , is obtained from vertex-disjoint copies of Gi and
Gj by adding all edges between V (Gi) and V (Gj). For |V (Gi)| = m and |V (Gj)| = n,
the edge set of Gi + Gj is the union of disjoint edge sets of the graphs Gi, Gj , and
the complete bipartite graph Km,n. Let Pn and Cn be the path and the cycle on n
vertices, respectively, and let Dn denote the discrete graph (sometimes called empty
graph) on n vertices. We will often use the Kleitman’s result [11] on crossing numbers
of the complete bipartite graphs. More precisely, he proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n

2

⌋⌊n− 1
2

⌋
, with min{m, n} ≤ 6.

Using Kleitman’s result [11], the crossing numbers for the join product of two
paths, the join product of two cycles, and also for the join product of a path and
a cycle were studied by Klešč [13]. Some omitted proofs for the crossing numbers
of G + Cn for the graphs G of order four are given later also by Klešč [14]. Let us
note that the exact values for the crossing numbers G + Pn and G + Cn have been
investigated for some graphs G of order five and six in [2, 5, 6, 12, 17,18, 20–22]. In all
these cases, the graph G is usually connected and contains at least one cycle.

The methods in the paper mostly use the multiple combinatorial properties of
the cyclic permutations. Yue et al. [25] introduced a new conjecture of the crossing
number of Wm + Cn that is equal to Z(m + 1)Z(n) + (Z(m)− 1)

⌊
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⌋

+ n +
⌈

m
2
⌉

+ 2,
for m, n ≥ 3. To determine this conjecture the Zarankiewicz’s number defined by
Z(n) =

⌊
n
2
⌋⌊

n−1
2
⌋
is also used. This conjecture was proved for W3 + Cn by Klešč [14].
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Our proof of Theorem 4.4 confirms the validity of this conjecture for W4 + Cn. Based
on the ability to generalize the optimal drawing for W4 + Pn onto the drawing of
the graph Wm + Pn, we give a new conjecture of the crossing number of Wm + Pn,
for all m ≥ 3, n ≥ 2. Also in this article, some parts of proofs can be simplified
by utilizing the work of the software that generates all cyclic permutations due to
Berežný and Buša [1]. The results in Theorem 3.3 and Theorem 4.4 have already been
claimed by Su and Huang [23] and by Yue et al. [25], respectively. Since these papers
do not seem to be available in English, we have not been able to verify the results.
Clancy et al. [4] also placed an asterisk on a number of the results in their survey to
essentially indicate that the mentioned results appeared in journals which do not have
a sufficiently rigorous peer-review process.

2. POSSIBLE DRAWINGS OF W4 AND PRELIMINARY RESULTS

Let W4 be the wheel on five vertices. We consider the join product of W4 with the
discrete graph Dn on n vertices. Let T i, i = 1, . . . , n, denote the subgraph which is
uniquely induced by the five edges incident with the fixed vertex ti. This means that
the graph T 1 ∪ . . . ∪ T n is isomorphic with the complete bipartite graph K5,n and
therefore, we can write

W4 + Dn = W4 ∪K5,n = W4 ∪
( n⋃

i=1
T i

)
. (2.1)

The graph W4 + Pn contains W4 + Dn as a subgraph. For the subgraphs of the
graph W4 + Pn which are also subgraphs of the graph W4 + Dn we use the same
notations as above. Let P ∗n denote the path induced on n vertices of W4 + Pn not
belonging to W4. Hence, P ∗n consists of the vertices t1, t2, . . . , tn and of the edges
{ti, ti+1} for i = 1, 2, . . . , n− 1. One can easily see that

W4 + Pn = W4 ∪K5,n ∪ P ∗n = W4 ∪
( n⋃

i=1
T i

)
∪ P ∗n . (2.2)

Similarly, the graph W4 + Cn contains both W4 + Dn and W4 + Pn as subgraphs.
Let C∗n denote the subgraph of W4 + Cn induced on the vertices t1, t2, . . . , tn. So,

W4 + Cn = W4 ∪K5,n ∪ C∗n = W4 ∪
( n⋃

i=1
T i

)
∪ C∗n. (2.3)

Let D be a good drawing of the graph W4 + Dn. The rotation rotD(ti) of a vertex
ti in the drawing D is the cyclic permutation that records the (cyclic) counterclockwise
order in which the edges leave ti, as defined by Hernández-Vélez et al. [8]. We use the
notation (12345) if the counter-clockwise order the edges incident with the vertex ti is
tiv1, tiv2, tiv3, tiv4, and tiv5. We emphasize that a rotation is a cyclic permutation;
that is, (12345), (23451), (34512), (45123), and (51234) denote the same rotation.
Thus, 5!/5 = 24 different rotD(ti) can appear in a drawing of the graph W4 + Dn.
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Since the complete bipartite graph K5,n is a subgraph of W4 + Dn, let us discuss
some properties of crossings among edges of its subgraph K5,2. Assume, in general,
D is a good drawing of the graph Km,n with the vertices t1, t2, . . . , tn of degree m.
The rotation rotD(ti), i = 1, 2, . . . , n, is defined in the same way as above, i.e., as the
cyclic permutation of m elements. Let Km,2 be the subgraph of Km,n with the vertices
ti and tj of degree m. Similarly as in the graph W4 + Dn, we can use the symbol
crD(T i, T j) for the number of crossings between the edges incident with ti and the
edges incident with tj . Woodall [24] showed that if both vertices ti and tj have the same
rotation in D, then crD(T i, T j) ≥ bm

2 cbm−1
2 c. It is easy to see that crD(T i, T j) = 0

only if rotD(tj) is inverse to rotD(ti). Moreover, if Q(rotD(ti), rotD(tj)) denotes the
minimum number of interchanges of adjacent elements of rotD(ti) required to produce
the inverse cyclic permutation of rotD(tj) or, equivalently, from rotD(tj) to the inverse
of rotD(ti), then crD(T i, T j) ≥ Q(rotD(ti), rotD(tj)), and that

crD(T i, T j) ≡ Q(rotD(ti), rotD(tj))(mod 2) if m is odd. (2.4)

This implies that crD(T i, T j) = 0 only if rotD(ti) is inverse to rotD(tj), and
crD(T i, T j) ≥ 4 if rotD(ti) = rotD(tj).

In the given drawing D, we will separate all subgraphs T i, i = 1, 2, . . . , n, of the
graph W4 + Dn into four mutually-disjoint families of subgraphs depending on the
number of times that T i crosses the edges of W4 in D. For i = 1, 2, . . . , n, let RD = {T i :
crD(W4, T i) = 0}, SD = {T i : crD(W4, T i) = 1}, and TD = {T i : crD(W4, T i) = 2}.
Every other subgraph T i crosses the edges of W4 at least three times in D. For
T i ∈ RD ∪SD ∪TD, let F i denote the subgraph W4∪T i, i ∈ {1, 2, . . . , n}, of W4 + Dn

and let D(F i) be its subdrawing induced by D. Clearly, the idea of dividing the
subgraphs T i into four mentioned families is also retained in all drawings of the graphs
W4 + Pn and W4 + Cn. Since the graph W4 consists of one dominating vertex of
degree 4 and of four vertices of degree 3 which form the subgraph isomorphic with the
cycle C4 (for brevity, we will write C4(W4)), we only need to consider possibilities of
crossings between subdrawings of C4(W4) and four edges incident with the dominating
vertex which form the subgraph isomorphic with the star S4 on five vertices (also for
brevity, we will write S4(W4)).

Lemma 2.1. Let G ∈ {Dn|n ≥ 1}∪{Pn|n ≥ 2}∪{Cn|n ≥ 3}. In any optimal drawing
of the join product W4 +G, the edges of C4(W4) do not cross each other. Moreover, the
subdrawing of W4 induced by D is isomorphic with one of the three drawings depicted
in Figure 2.

Proof. Assume an optimal drawing of the graph W4 + Dn in which two edges of
C4(W4) cross. Let x be the point of the plane in which two edges, say {ci, ci+1} and
{cj , cj+1}, of C4(W4) cross. Since the plane is a normal space, in the plane there
is an open set Ax such that Ax contains only x and parts of the crossing edges,
that is, Ax does not contain a further vertex or part of another edge. Clearly, we
can also assume that the dominating vertex of W4 is not contained in Ax. Thus, all
remaining edges of the drawing are disjoint with Ax, see Figure 1(a). Figure 1(b) shows
that the edges {ci, ci+1} and {cj , cj+1} can be redrawn into new edges {ci, cj} and
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{ci+1, cj+1} which do not cross. The vertices ci, cj , ci+1, cj+1 form the 4-cycle again.
Since each vertex of the cycle C4(W4) is adjacent to the dominating vertex of degree four
of W4, the new drawing of the graph W4 +Dn with less number of crossings is obtained.
This contradiction completes the proof for the optimal drawings of W4 + Dn, and the
proof proceeds in the similar way also for the graph G ∈ {Pn|n ≥ 2} ∪ {Cn|n ≥ 3}.

ci cj

ci+1cj+1

x

ci cj

ci+1cj+1

x

(a) (b)

Fig. 1. Elimination of a crossing in C4(W4)

According to Lemma 2.1, suppose only three non isomorphic good drawings of the
graph W4 as shown in Figure 2, and where the vertex notation of W4 will be justified
later.

v1

v2v3

v4

v5

v4

v5v2

v3

v1

v4

v5v2

v3

v1

(b) (c)(a)

Fig. 2. Three possible non isomorphic good drawings of the graph W4
with no crossing among edges of C4(W4)

3. THE CROSSING NUMBER OF W4 + Pn

In the proofs of the paper, several parts are based on the previous Lemma 2.1 and
on the following theorem presented in [19].

Theorem 3.1 ([19, Theorem 3.2]). cr(W4 + Dn) = 4
⌊

n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

for n ≥ 1.
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Even though we are able to compute the exact values of crossing numbers
of the graphs W4 + P2 and W4 + P3 using an algorithm located on the website
http://crossings.uos.de/, due to the simplicity of these proofs, we prove the following
Lemma 3.2.
Lemma 3.2. cr(W4 + P2) = 4 and cr(W4 + P3) = 9.
Proof. Notice that the graphs W4 + P2 and W4 + P3 are isomorphic with the join
product of the cycle C4 with the cycle C3 and with the graph K4 \ e obtained by
removing one edge from the complete graph K4, respectively. In [13] and [14] were
proved that cr(C4+C3) = 4 and cr(C4+K4\e) = 9, respectively, and so cr(W4+P2) = 4
and cr(W4 + P3) = 9.

Theorem 3.3. cr(W4 + Pn) = 4
⌊

n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

+ 1 for n ≥ 2.

Proof. In Figure 3, the edges of K5,n cross each other 4
⌊

n
2
⌋⌊

n−1
2
⌋
times, each subgraph

T i, i = 1, . . . ,
⌈

n
2
⌉
on the right side crosses the edges of C4(W4) exactly once and each

subgraph T i, i =
⌈

n
2
⌉

+ 1, . . . , n on the left side crosses the edges of S4(W4) exactly
twice.

⌈n
2
⌉

t

t t
1+

⌈n
2
⌉t

n

1

Fig. 3. The good drawing of W4 + Pn with 4
⌊

n
2

⌋⌊
n−1

2

⌋
+ n +

⌊
n
2

⌋
+ 1 crossings

The path P ∗n crosses W4 once, and so 4
⌊

n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

+ 1 crossings ap-
pear among the edges of the graph W4 + Pn in this drawing. Thus, cr(W4 + Pn) ≤
4
⌊

n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

+ 1. By Lemma 3.2, the result is true for n = 2 and n = 3. We
prove the reverse inequality by induction on n. Suppose now that, for some n ≥ 4,
there is a drawing D with

crD(W4 + Pn) < 4
⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n

2

⌋
+ 1, (3.1)

and that

cr(W4 + Pm) = 4
⌊m

2

⌋⌊m− 1
2

⌋
+ m +

⌊m

2

⌋
+ 1 for any integer m < n. (3.2)

As the graph W4 + Dn is a subgraph of the graph W4 + Pn, by Theorem 3.1, the
edges of W4 + Pn are crossed exactly 4

⌊
n
2
⌋ ⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋
times, and therefore, no
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edge of the path P ∗n is crossed in D. This also enforces that all vertices ti of the path
P ∗n must be placed in the same region of the considered good subdrawing of W4. Our
assumption on D, together with the well-known fact cr(K5,n) = 4

⌊
n
2
⌋⌊

n−1
2
⌋
, implies

that
crD(W4) + crD(W4, K5,n) ≤ n +

⌊n

2

⌋
,

that is,
crD(W4) + s + 2(n− r − s) ≤ n +

⌊n

2

⌋
, (3.3)

if we use the notation r = |RD| and s = |SD|. This forces that 2r +s ≥
⌈

n
2
⌉

+crD(W4),
and if r = 0 then s ≥

⌈
n
2
⌉
. By Lemma 2.1, we can also suppose that there is no

crossing among edges of C4(W4) in all contemplated subdrawings of the graph W4.
Now, we will deal with the possibilities of obtaining a subgraph T i ∈ RD ∪ SD in
the drawing D and we show that in all cases a contradiction with the assumption (3.1)
is obtained.
Case 1. crD(W4) = 0. In this case, without lost of generality, we can consider the
drawing of W4 with the vertex notation like that in Figure 2(a). Because no face is
incident to all vertices in D(W4), there is no possibility to obtain a subdrawing of
W4 ∪ T i for a T i ∈ RD. As r = 0, there are at least

⌈
n
2
⌉
subgraphs T i by which

the edges of W4 are crossed just once. For a subgraph T i ∈ SD, the vertex ti must
be placed in the region with four vertices v1, v2, v3, and v4 of the graph W4 on
its boundary. So, there are 4 different possible rotations systems with one crossing
depending on which edge of C4(W4) is crossed. These four possibilities under our
consideration are denoted by Ap, for p = 1, 2, 3, 4. For our purposes, it does not matter
which of the regions is unbounded, and so we can assume the drawings shown in
Figure 4. Thus the configurations A1, A2, A3, and A4 are represented by the cyclic
permutations (12345), (12534), (15234), and (12354), respectively. They have been
already introduced in [19]. LetMD be the set of all configurations for the drawing D
belonging toM = {A1,A2,A3,A4}.

For the rest of the proof, let us also assume that the number of subgraphs with
the configuration Ap ∈MD is at least as much as the number of subgraphs with the
configuration Aq ∈MD, for each possible p 6= q, and let T i ∈ SD be such a subgraph
with the configuration Ap of F i. Hence,

∑

l 6=i, T l∈SD

crD(T i, T l) ≥ 3(s− 2) + 2,

that is, ∑

l 6=i, T l∈SD

crD(W4 ∪ T i, T l) ≥ 4(s− 2) + 3,

where an idea of the arithmetic mean of the values four, three and two could be
exploited (here, the lower bounds for the number of crossings of two configurations
cr(Ap,Aq) were also established in Table 1 in [19]).
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Fig. 4. Drawings of four possible configurations fromM of the subgraph F i

Table 1
The necessary number of crossings between T k and T l for the configurations Ap, Aq

− A1 A2 A3 A4

A1 4 2 3 3
A2 2 4 3 3
A3 3 4 4 2
A4 3 3 2 4

Moreover, it is not difficult to verify that crD(W4 ∪ T i, T l) ≥ 4 is fulfilling for each
T l 6∈ SD assuming that all vertices are placed in the same region of the considered
good subdrawing of W4. Thus, by fixing the graph W4 ∪ T i, we have

crD(W4 + Pn) ≥ crD(K5,n−1) + crD(K5,n−1, W4 ∪ T i) + crD(W4 ∪ T i)

≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(s− 2) + 3 + 4(n− s) + 1

= 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4n− 4

≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

Case 2. crD(W4) = 1. Without lost of generality, we can choose the vertex notation of
the graph W4 given in Figure 2(b). The set RD is also empty. Now, for a T i ∈ SD,
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the vertex ti is placed in the region with four vertices v1, v2, v3, and v4 of the graph
W4 on its boundary. The edge tiv5 crosses either v3v4 or v1v4 of W4, and these two
possibilities under our consideration are denoted by B1 and B2. Again, as for our
purposes, it does not matter which of the regions is unbounded, we can assume that
the drawings are as shown in Figure 5. Let ND be the set of all configurations for the
drawing D belonging to N = {B1,B2}.
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v
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v
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B1 B2

Fig. 5. Drawings of two possible configurations from N of the subgraph F i

For any T i ∈ SD with Bp ∈ ND of F i, it is not difficult to verify that the edges of
W4∪T i are crossed at least four times by each subgraph T l, l 6= i using the subdrawing
of F i induced by D, see Figure 5. Thus, by fixing the subgraph W4 ∪ T i, we have

crD(W4 + Pn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(n− 1) + 1 + 1

≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

Case 3. crD(W4) = 2. Without lost of generality, we can consider the drawing of W4
with the vertex notation like that in Figure 2(c). In this case, there is no possibility
to obtain a subdrawing of W4 ∪ T i for a T i ∈ SD, that is, the set SD must be empty.
This fact, with the inequality (3.3), confirms that r ≥ 2. So, we will discuss only about
the subgraphs T i whose edges do not cross the edges of W4. For a T i ∈ RD, the
reader can easily verify that the subgraph F i = W4 ∪ T i is uniquely represented by
rotD(ti) = (15432), and crD(T i, T j) ≥ 4 holds for any T j ∈ RD with j 6= i provided
that rotD(ti) = rotD(tj), for more see [24]. Moreover, it is not difficult to verify that
crD(W4 ∪ T i, T l) ≥ 4 is true for any subgraph T l 6∈ RD using the unique subdrawing
D(F i). Thus, by fixing the graph W4 ∪ T i, we have

crD(W4 + Pn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(r − 1) + 4(n− r) + 2

= 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4n− 2 ≥ 4

⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.
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We have shown, in all cases, that there is no good drawing D of the graph
W4 + Pn with fewer than 4

⌊
n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

+ 1 crossings. This completes the proof
of Theorem 3.3.

4. THE CROSSING NUMBER OF W4 + Cn

In the proof of Theorem 4.4, the following lemma related to some restricted subdrawings
of the graph W4 + Cn is going to be helpful.

Lemma 4.1. Let D be a good drawing of W4 + Cn, n ≥ 3. If the edges of C4(W4)
are crossed at least

⌈
n
2
⌉

+ 2 times, then there are at least 4
⌊

n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

+ 4
crossings in D.

Proof. As the wheel W4 consists of two edge-disjoint subgraphs C4(W4) and S4(W4),
then crD(C4(W4)) + crD(C4(W4), S4(W4) + Cn) ≥

⌈
n
2
⌉

+ 2. The exact value
for the crossing number of the graph S4 + Cn is given by Klešč et al. [15], i.e.,
cr(S4 + Cn) = 4

⌊
n
2
⌋⌊

n−1
2
⌋

+ 2
⌊

n
2
⌋

+ 2. This enforces that the edges of S4(W4) + Cn

must be crossed at least 4
⌊

n
2
⌋⌊

n−1
2
⌋

+ 2
⌊

n
2
⌋

+ 2 times in D. Consequently, we have

crD(W4 + Cn) = crD(S4(W4) + Cn) + crD(C4(W4))
+ crD(C4(W4), S4(W4) + Cn)

≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
+ 2 +

⌈n

2

⌉
+ 2

= 4
⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n

2

⌋
+ 4.

Two vertices ti and tj of C∗n are antipodal in a drawing of W4 + Cn if the subgraphs
T i and T j do not cross. A drawing is antipode-free if it has no antipodal vertices.

Lemma 4.2. cr(W4 + C3) = 12

Proof. Notice that the graph Wn + Cm is isomorphic with the graph Wm + Cn for all
integers m, n ≥ 3. By Klešč [14] was shown that cr(W3 + Cn) = 2

⌊
n
2
⌋⌊

n−1
2
⌋

+ n + 4,
and so cr(W4 + C3) = cr(W3 + C4) = 12.

Lemma 4.3. cr(W4 + C4) = 18.

Proof. The possibility to add the edge t1t4 on the vertices of the path P ∗4 into the
subdrawing in Figure 3 with exactly three another crossings forces cr(W4 + C4) ≤ 18.
To prove the reverse inequality, suppose now that, there is a drawing D of the graph
W4 + C4 with at most 17 crossings. By Lemma 4.2, there are at most five crossings
on edges of each subgraph T i, otherwise, by deleting the edges of T i with at least
six crossings, a drawing of the graph homeomorphic to W4 + C3 with at most eleven
crossings is obtained. Consequently, using the pigeon principle, each subgraph T i must
be crossed by some subgraph T j , j 6= i, no more than once.

Let us first show that the considered drawing D must be antipode-free. For
a contradiction suppose, without loss of generality, that, T 1 does not cross T 2. If the
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edges of at least one of T 3 and T 4, say T 3, cross the edges of W4 at least twice, then
crD(W4 ∪ T 1 ∪ T 2, T 3) ≥ 2 + 4 = 6 according to the well-known fact cr(K3,5) = 4.
Three possible subdrawings of the graph W4 induced by D are shown in Figure 2. They
do not allow to obtain simultaneously the subgraphs T 3 and T 4 from two different
sets RD and SD because just one of the sets RD and SD must be empty. Hence,
if either T 3, T 4 ∈ RD or T 3, T 4 ∈ SD, then crD(T 3, T 4) ≥ 2 holds provided that
either rotD(t3) = rotD(t4) or the lower bounds for the number of crossings of two
configurations, respectively. Thus in all cases there are at least six crossings on edges
of the subgraph T 3, a contradiction.

To finish the proof, let us assume that crD(T i, T j) ≥ 1 holds for every pair i, j,
and let also crD(T 1, T 2) = 1. If the edges of at least one of T 3 and T 4, say T 3, cross
the edges of W4 at least twice, then crD(W4 ∪ (T 1 ∪ T 2) ∪ T 4, T 3) ≥ 2 + 3 + 1 = 6
again according to cr(K3,5) = 4. If either T 3, T 4 ∈ RD or T 3, T 4 ∈ SD, then the proof
proceeds in the similar way as in the previous case.

Theorem 4.4. cr(W4 + Cn) = 4
⌊

n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

+ 4 for n ≥ 3.

Proof. Into the drawing in Figure 3, it is possible to add the edge t1tn which forms
the cycle C∗n on the vertices of the path P ∗n with exactly three another crossings. Thus,
cr(W4 + Cn) ≤ 4

⌊
n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

+ 4. By Lemma 4.2 and 4.3, the result holds for
n = 3 and n = 4. We prove the reverse inequality by induction on n. Suppose now
that, for some n ≥ 5, there is a drawing D with

crD(W4 + Cn) < 4
⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n

2

⌋
+ 4, (4.1)

and that

cr(W4 + Cm) = 4
⌊m

2

⌋⌊m− 1
2

⌋
+ m +

⌊m

2

⌋
+ 4 for any integer m < n. (4.2)

We claim that the considered drawing D must be antipode-free. For a contradiction
suppose, without loss of generality, that crD(T n−1, T n) = 0. If at least one of T n−1

and T n, say T n, does not cross W4, it is not difficult to verify in Figure 2 that T n−1

must cross W4 at least three times. Using the positive lower bounds for the number of
crossings of two configurations in Table 3, the subgraphs T n−1 and T n are not both
from the set SD, that is, crD(W4, T n−1 ∪ T n) ≥ 3. By [11], we already know that
cr(K5,3) = 4, which yields that each T k, k = 1, 2, . . . , n− 2, crosses the edges of the
subgraph T n−1 ∪ T n at least four times. So, for the number of crossings in D we have

crD (W4 + Cn−2) + crD(T n−1 ∪ T n)
+ crD(W4, T n−1 ∪ T n) + crD(K5,n−2, T n−1 ∪ T n)

≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+
⌊n− 2

2

⌋
+ n− 2 + 4 + 0 + 3 + 4(n− 2)

= 4
⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n

2

⌋
+ 4.
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This contradiction with the assumption (4.1) confirms that D is antipode-free. As the
graph W4 + Dn is a subgraph of the graph W4 + Cn, also by Theorem 3.1, the edges
of W4 + Cn are crossed at least 4

⌊
n
2
⌋ ⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋
times, and therefore, at most

three edges of the cycle C∗n can be crossed in D. This also enforces that the vertices ti

of the cycle C∗n must be placed at most in three different regions in the considered
good subdrawing of W4. Our assumption on D, together with cr(K5,n) = 4

⌊
n
2
⌋⌊

n−1
2
⌋
,

implies that

crD(W4) + crD(W4, K5,n) ≤ crD(W4) + 0r + 1s + 2(n− r − s) ≤ n +
⌊n

2

⌋
+ 3, (4.3)

if we use the notation r = |RD| and s = |SD| again. This forces that 2r + s ≥⌈
n
2
⌉

+ crD(W4) − 3, and if r = 0 then s ≥
⌈

n
2
⌉
− 3. Of course, in this case, the set

SD is certainly nonempty for each n ≥ 7. Again by Lemma 2.1, there is no crossing
among edges of C4(W4) in all contemplated subdrawings of the graph W4. Now, we
will deal with the possibilities of obtaining a subgraph T i ∈ RD ∪ SD in the drawing
D and we show that in all cases a contradiction with the assumption (4.1) is obtained.
Case 1. crD(W4) = 0. In this case, without lost of generality, we can choose the
vertex notation of the graph W4 as shown in Figure 2(a). The unique subdrawing of
W4 induced by D contains five different regions. Let us denote these five regions by
ω1,2,3,4, ω1,2,5, ω1,4,5, ω2,3,5, and ω3,4,5 depending on which of vertices are located on
the boundary of the corresponding region. Because no face is incident to all vertices in
D(W4), there is no possibility to obtain a subdrawing of W4 ∪ T i for a T i ∈ RD, that
is, r = 0. Since the vertices of C∗n do not have to be placed in the same region in the
considered subdrawing of W4, three possible subcases may occur:

a) All vertices ti of C∗n are placed in the same region of subdrawing of W4. If
they are placed in the region ω1,2,3,4, then each subgraph T i crosses some edge of
C4(W4) at least once. As n ≥

⌈
n
2
⌉

+ 2, for n ≥ 5, Lemma 4.1 forces a contradiction
with (4.1) in D. Now, let us turn to the good drawing D of the graph W4 + Cn

with the assumption that all vertices of C∗n are placed in some region of subdrawing
of W4 with three vertices of the graph W4 on its boundary. From their symmetry,
we can suppose that ti ∈ ω2,3,5 for each ti, i = 1, . . . , n. Let us denote by H1 the
subgraph of W4 with the vertex set V (W4), and the edge set E(W4)\{v2v3, v2v5, v3v5}.
Since the exact value for the crossing number of the graph H1 + Dn is given in [20],
i.e., cr(H1 + Dn) = 4

⌊
n
2
⌋⌊

n−1
2
⌋

+
⌊

n
2
⌋
, the edges of H1 + Dn are crossed at least

4
⌊

n
2
⌋⌊

n−1
2
⌋

+
⌊

n
2
⌋
times in D. As each subgraph T i crosses edges of the cycle v2v3v5v2

at least twice, we obtain

crD(W4 + Cn) ≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
+ 2n ≥ 4

⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n

2

⌋
+ 4.

b) All vertices of C∗n are placed in two regions of subdrawing of W4. Clearly, the
edges of C∗n have to cross the edges of W4 at least twice. Let D

′ be the subdrawing of
W4+Dn induced by D without the edges of C∗n. Inequality (4.3) can be used to estimate
the number of crossings on the edges of W4 in D

′ , that is, s + 2(n− s) ≤ n +
⌊

n
2
⌋

+ 1.
This enforces that s ≥

⌈
n
2
⌉
− 1. So, for n ≥ 5, there is at least one subgraph T i which
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crosses the edges of W4 just once. All vertices ti of subgraphs T i ∈ SD must be in
the region of subdrawing of W4 with four vertices of the graph W4 on its boundary.
For the rest of the proof, we may therefore assume that ω2,3,5 is the second region.
As the edges of C∗n cross the edges of C4(W4) twice, due to Lemma 4.1, we only
consider the case for s =

⌈
n
2
⌉
− 1. Again, inequality (4.3) can be amplified by using

the notion t = |TD|, that is,

s + 2t + 3(n− s− t) ≤ n +
⌊n

2

⌋
+ 1.

The resulting inequality t ≥
⌊

n
2
⌋

+ 1 can be replaced by t =
⌊

n
2
⌋

+ 1 provided that
s + t ≤ n and s =

⌈
n
2
⌉
− 1. Since all vertices tj of subgraphs T j ∈ TD are placed in

ω2,3,5, each subgraph T i ∈ SD can only cross one from the edges v1v2, v2v3, and v3v4.
In the rest of paper, based on their symmetry, let the edge v1v2 be crossed trough
them at least as many times as the edge v3v4. Let us denote by H the subgraph of
W4 with the vertex set V (W4), and the edge set E(W4) \ {v1v4, v1v5, v3v4, v4v5}. We
are able to estimate the lower bound equal to n + 2 for the number of crossings on
edges of the graph H in D

′ . More precisely,

2t +
⌈s

2

⌉
= 2
(⌊n

2

⌋
+ 1
)

+
⌈⌈

n
2
⌉
− 1

2

⌉
≥ n + 2.

Let G be the graph difference of graphs W4 and H, that is, G = W4 − H. Since
cr(G + Dn) = 4

⌊
n
2
⌋⌊

n−1
2
⌋

+
⌊

n
2
⌋
by [20], the edges of G + Dn are crossed at least

4
⌊

n
2
⌋⌊

n−1
2
⌋

+
⌊

n
2
⌋
times in D

′ . Then

crD′ (W4 + Dn) = crD′ (G + Dn) + crD′ (H, G + Dn)

≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
+ n + 2.

As the edges of C∗n cross the edges of W4 at least twice, we also obtain a contradiction
with (4.1) in D

crD(W4 + Cn) ≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
+ n + 2 + 2.

c) All vertices of C∗n are placed in three regions of subdrawing of W4. Recall that at
most three edges of the cycle C∗n can be crossed in D. So, the edges of C∗n cross the edges
of W4 three times, including the edges of C4(W4) twice, which yields that the drawing
D without the edges of C∗n is an optimal drawing of the graph W4 + Dn. This fact,
with inequality (4.3), confirms that s + 2(n− r − s) ≤ n +

⌊
n
2
⌋
. The last inequality

implies that there are at least
⌈

n
2
⌉
subgraphs T i which cross the edges of C4(W4) at

least once. Consequently, Lemma 4.1 also contradicts the assumption of D.
Case 2. crD(W4) = 1. Without lost of generality, we can choose the vertex notation of
the graph W4 in such a way as shown in Figure 2(b). The set RD is empty provided
by no face is incident to all vertices in D(W4). This fact, with inequality (4.3) in the
form 1 + 1s + 2(n− s) ≤ n +

⌊
n
2
⌋

+ 3, confirms that s ≥
⌈

n
2
⌉
− 2, which yields that
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s ≥ 1. If we discuss about the subgraphs T i whose edges cross the edges of W4 exactly
once, then the edge tiv5 crosses either v3v4 or v1v4 of W4. These two possibilities
under our consideration are denoted by B1 and B2, for more see Figure 5. In the rest
of the paper, let us also assume that the number of subgraphs with the configuration
B1 is at least as much as the number of subgraphs with the configuration B2, and let
T i ∈ SD be such a subgraph with the configuration B1 of F i. Hence,

∑

l 6=i, T l∈SD

crD(T i, T l) ≥ 7
2(s− 2) + 3,

that is, ∑

l 6=i, T l∈SD

crD(W4 ∪ T i, T l) ≥ 9
2(s− 2) + 4,

where an idea of the arithmetic mean of the values four and three could be exploited
(cr(B1,B2) ≥ 3 and cr(Bj ,Bj) ≥ 4 were also established in [19]). Let us denote
by H the subgraph of W4 with the vertex set V (W4), and the edge set E(H) =
{v1v2, v1v3, v1v4, v3v4}. The graph H contains the cycle v1v3v4v1 as a subgraph by
which the vertices v2 and v5 are separated in D(H), that is, each T k crosses the
edges of H at least once. Let G be the graph difference of graphs W4 and H, that is,
G = W4 −H. If there is a vertex tk of the cycle C∗n with the placement in the inner
region of the cycle v1v3v4v1, then

crD(W4 + Cn) = crD(G + Cn) + crD(H) + crD(H, G + Cn)

≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
+ 1 + 1 + n + 2,

because the crossing number of G + Cn is given in [18], i.e., cr(G + Cn) =
4
⌊

n
2
⌋⌊

n−1
2
⌋

+
⌊

n
2
⌋

+ 1 and the cycle C∗n crosses H at least twice. This contradiction
with the assumption (4.1) enforces that all vertices tk of C∗n are placed in the outer
region of the cycle v1v3v4v1. Now, with respect to this restriction, we can verify that
crD(W4 ∪ T i, T l) ≥ 4 holds for each T l 6∈ SD. Thus, by fixing the graph W4 ∪ T i,
we have

crD(W4 + Cn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 9

2(s− 2) + 4 + 4(n− s) + 2

= 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4n + 1

2s− 3

≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4n + 1

2

(⌈n

2

⌉
− 2
)
− 3

≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
+ n + 4.

The last inequality does not apply only to n = 5, thus we will discuss this case
separately. We show that in all cases the contradiction with the number of crossings
at most eight on edges of T i is obtained, otherwise, by deleting the edges of T i
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with at least nine crossings, a drawing of the graph homeomorphic to W4 + C4 with
fever than eighteen crossings is obtained.

If s ≥ 3, say T i, T j , T k ∈ SD, then crD(T i, T j) ≥ 3 and crD(T i, T k) ≥ 3 hold
according to the lower bounds for the number of crossings of two configurations. Since
the drawing D is antipode-free, the subgraph T i ∈ SD crosses the edges of the graph
W4 ∪ T ` ∪ T m at least three times. To finish the proof, let us suppose that s ≤ 2
and let us also emphasize that t ≥ 6 − 2s provided by inequality (4.3) in the form
1 + 1s + 2t + 3(5− s− t) ≤ 5 + b 5

2c+ 3. Further, for each T i ∈ SD, the edges of T i

are crossed by any T k ∈ TD at least twice. If s = 2, say T i, T j ∈ SD, then t ≥ 2. For
T k, T ` ∈ TD, we obtain crD(W4 ∪ T j ∪ T k ∪ T l ∪ T m, T i) ≥ 1 + 3 + 2 + 2 + 1 = 9.
If s = 1, say T i ∈ SD, then t ≥ 4. It means that T i contains at least two crossings
with all four T j , T k, T `, T m ∈ TD and one with the graph W4. Thus in all cases the
subgraph T i ∈ SD contains at least nine crossings on its edges, a contradiction.

Case 3. crD(W4) = 2. Without lost of generality, we can consider the drawing of W4
with the vertex notation like that in Figure 2(c). In this case, there is no possibility
to obtain a subdrawing of W4 ∪ T i for a T i ∈ SD, that is, s = 0. This fact, with
the inequality (4.3) in the form 2 + 2(n− r) ≤ n +

⌊
n
2
⌋

+ 3, enforces r ≥ 1. For any
T i ∈ RD, the subgraph F i = W4 ∪ T i is uniquely represented by rotD(ti) = (15432),
and so we can verify that crD(W4 ∪ T i, T l) ≥ 4 is fulfilling for any subgraph T l 6∈ RD

using this unique subdrawing D(F i). Thus, by fixing the subgraph W4 ∪ T i, we have

crD(W4 + Cn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(r − 1) + 4(n− r) + 2

= 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4n− 2 ≥ 4

⌊n

2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
+ n + 4.

Although the last inequality does not apply only to n = 5, we are able to justify
the existence of at least one other crossing and thus confirm its truth for all n ≥ 5.
Since each subgraph T k ∈ TD crosses some edge of the cycle C4(W4) at least once, by
Lemma 4.1 for n = 5 and for crD(C4(W4)) = 2, there are at most three subgraphs
whose edges cross the edges of W4 exactly twice. This fact, with inequality (4.3) in the
form 2 + 2t + 3(5− r− t) ≤ 5 +

⌊ 5
2
⌋

+ 3, implies r ≥ 2. For T i ∈ RD, there are at least
two different T j and T k such that crD(T i, T j) = 1 and crD(T i, T k) = 1, otherwise,
by deleting the edges of T i with more than eight crossings, a drawing of the graph
homeomorphic to W4 + C4 with fewer than eighteen crossings is obtained. If any of the
vertices tj and tk is not placed in the same region of subdrawing of W4 as the vertex
ti, then there at least two new crossings on edges of C∗5 in D. If both are located in
the same region as the vertex ti, then each of them crosses the edges of W4 ∪ T i at
least five times.

Thus, it was shown in all mentioned cases that there is no good drawing D of the
graph W4 + Cn with fewer than 4

⌊
n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

+ 4 crossings, and the proof of
Theorem 4.4 is complete.
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5. CONCLUSIONS

Let Wn and Sn denote the wheel and the star on n+1 vertices, respectively. In general,
the graph Sn + Cm is isomorphic with the graph Wm + Dn for all integers n ≥ 1
and m ≥ 3. Based on this knowledge, Klešč et al. [15] also established the crossing
numbers of the graphs Wm + Dn for 3 ≤ n ≤ 5 and m ≥ 3. The crossing number of
W4 + Dn was recently determined for any n ≥ 1 by Staš [19]. Due to the possibility
to generalize the optimal drawing for W4 + Pn in Figure 3 onto the drawings of the
graphs Wm + Pn, we are able to postulate that

cr(Wm + Pn) = Z(m + 1)Z(n) + (Z(m)− 1)
⌊n

2

⌋
+ n + 1,

for all m ≥ 3 and n ≥ 2. Recently, this conjecture was proved for the graph W3 + Pn

by Klešč and Schrötter [16]. Theorem 3.3 also confirms the validity of this conjecture
for W4 + Pn. On the other hand, the graphs Wm + P2 and Wm + P3 are isomorphic
with the join product of the cycle Cm with the cycle C3 and with the graph K4 \ e
obtained by removing one edge from the complete graph K4, respectively. The exact
values for the crossing numbers of the graphs Cm + Cn are given by Klešč [13], that
is, cr(Cm + Cn) = Z(m)Z(n) + 2 for any m, n ≥ 3 with min{m, n} ≤ 6. The crossing
numbers of K4 \ e + Cm equal to 2

⌊
m
2
⌋⌊

m−1
2
⌋

+
⌊

m
2
⌋

+ 3 were established also by
Klešč [14]. These facts allow us to determine another results for the join product of
the wheels Wm with the path on two and three vertices.

Theorem 5.1. cr(Wm + P2) =
⌊

m
2
⌋⌊

m−1
2
⌋

+ 2 for m ≥ 3.

Theorem 5.2. cr(Wm + P3) = 2
⌊

m
2
⌋⌊

m−1
2
⌋

+
⌊

m
2
⌋

+ 3 for m ≥ 3.

One can easily verify that these results also confirm the validity of our conjecture
for the graphs Wm + P2 and Wm + P3. Theorem 4.4 confirms the validity of the
conjecture presented by Yue et al. [25] for the crossing number of W4 + Cn. As we
mentioned earlier, the graph Wn + Cm is isomorphic with the graph Wm + Cn for all
integers m, n ≥ 3. The crossing number of W3 + Cn obtained by Klešč in [14] and
the crossing number of W4 + Cn by Theorem 4.4 force us further results for the join
product of the wheels Wn with the cycles on three and four vertices.

Theorem 5.3. cr(Wn + C3) = 2
⌊

n
2
⌋⌊

n−1
2
⌋

+ n + 4 for n ≥ 3.

Theorem 5.4. cr(Wn + C4) = 4
⌊

n
2
⌋⌊

n−1
2
⌋

+ n +
⌊

n
2
⌋

+ 4 for n ≥ 3.

Note that Berežný and Staš [3] have already established the conjecture that the
crossing number of Wm + Dn is equal to Z(m + 1)Z(n) + (Z(m)− 1)

⌊
n
2
⌋

+ n for m at
least three.
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