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Abstract: The paper presents the result of an evaluation of the performance of different message broker 

system configurations, which lead to the construction of the specific architecture guidelines for such systems. 

The examples are provided for an exemplary middleware messaging server software - RabbitMQ, set in high 

availability - enabling and redundant configurations. Rabbit MQ is a message queuing system realizing the 

middleware for distributed systems that implements the Advanced Message Queuing Protocol. The scalability 

and high availability design issues are discussed and the possible cluster topologies and their impact is 

presented. Since HA and performance scalability requirements are in conflict, scenarios for using clustered 

RabbitMQ nodes and mirrored queues are interesting and have to be considered with specific workloads and 

requirements in mind. The results of performance measurements for some topologies are also reported in this 

article. 

Keywords: high availability, fault tolerance, middleware messaging, RabbitMQ, clustered systems 

architecture.  

 

 

1. Introduction 

 

Due to the cloud development, the programming paradigms have shifted. The 

applications, devices or appliances form the distributed parts of the whole solution. As 

they serve more and more users, they need to connect and scale. The components of a 

larger application need constant connection between themselves, or to user devices 

and data. The messaging task needs to be supported by the system internally, or using 

external frameworks or systems. As Richardson writes in [1]: ''Future applications (..)  

[will be] always on, cloud hosted, and accessible anywhere. Input and processing are 

continuous and automatic, and deliver a filtered stream of information that the user 

wants, as it happens.'' 
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The middleware layer, often referred to as a 'glue' between different system 

components, allows communication between them. Message queuing, also called 

message-oriented middleware, is in fact an architectural pattern. It is based on an 

implementation of a system part called the message broker, an intermediary program 

which performs message validation, message transformation and message routing 

functions. The message broker provides a common infrastructure for interactions 

between elements of the distributed systems, which interact by sending or receiving 

messages, and is a recent alternative for distributed interaction between the 

components, or entities, of an information processing system.  

In this paper we describe the design considerations of scalability and high 

availability (HA) improving architectures, using RabbitMQ software, an open source 

message broker and queuing server that is becoming more and more popular as a 

middleware. The balance between HA and scalability is challenging because of 

contrary requirements - the scalability and performance-optimisation mechanisms are 

in principle hindered by high availability or fault tolerance solutions, which prefer 

stability and durability over performance. The papers’s objective is to provide 

guidelines for such design, based on presented performance results and previous work. 

For this purpose, this paper presents possible configuration scenarios for a RabbitMQ 

cluster of servers, which combine scalability with high availability / fault tolerance 

(HA/FT) requirements. RabbitMQ is therefore described as middleware solution and 

clustering options are presented, as well as HA possibilities. The scenarios were 

implemented for test-field studies, whose results are presented. Most of the available 

literature or reports such as [2], [3] or [4] concentrates on the scalability issues and 

performance results, or, from a different perspective, strictly on high availability / 

fault-tolerance solutions for queuing [1]. This paper aims to bring a novelty in 

discussing solutions that combine both requirements, as it is a most probable industry 

scenario, and there is a lack of information on the results of similar experimentations.  

The paper is organized as follows: the design requirements for middleware system 

are presented and briefly explained – specifically, scalability and high availability 

concerns are discussed. The next part includes a short summary of RabbitMQ, the 

message broker used in research. The main part includes message broker configuration 

scenarios for scalability and high availability; the experimental results of constructed 

systems are presented for comparison. Finally, conclusions are revealed. 

 

2. Messaging middleware with RabbitMQ as an example 

 

Message queuing is thoroughly described, for example, in [5], [6] and [7]. It is 

often based on a  publish/subscribe-like interaction [7]. The message queuing is an 

alternative to Classifications, which are complementary to the publish/subscribe model 

of a distributed information system [8]. Classifications involve techniques such as 

message passing, shared spaces or remote invocations and constitute solutions to the 

middleware layer challenges. Middleware systems are also subject to numerous 
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studies, concentrating on networking and concurrent design. There is a concept of 

using patterns in overall software architecture, with [9] as a main example, or for 

security related applications ([10], [11]). 

 From the architect's perspective, message-oriented middleware can be seen as a 

(1) queuing system, where messages are concurrently pulled by consumers, as well as 

(2) subscription-based exchange solution, allowing groups of consumers to subscribe 

to groups of publishers, resulting in a communication network or platform, or a 

message bus [7]. Such bus or queuing system has to be able to scale in terms of 

geographical distance as well as in terms of devices or applications served. Quoting 

Jones et al. [4], ''the distribution of information sent from the publishers to the hub to 

be distributed to the necessary subscribers allows for applications to run while relying 

on data from other locations, wherever they may be.'' 

 RabbitMQ is an open source message broker and queuing server that can be used 

to let disparate applications share data via a common protocol or to simply queue jobs 

for processing by distributed workers. RabbitMQ middleware supports many 

messaging protocols [12], among which the most important are STOMP: Streaming 

Text Oriented Messaging Protocol [13] and AMQP: Advanced Messaging Queuing 

Protocol [14].  

 For the purposes of this paper the AMQP-defined messaging architecture was 

used. The queues are most important concept of message broker structure; every 

message received by the RabbitMQ is always placed in a queue, which in turn can be 

stored in memory (memory-based) or on a disk (disk-based). Second important 

element of the RabbitMQ is exchange - the delivery service for messages. The 

exchange used by a publish operation determines if the delivery will be either direct or 

publish-and-subscribe. A client chooses the exchange used to deliver each message as 

it is published. The exchange looks at the information in the headers of a message and 

selects where they should be transferred to[15]. 

 

2.1. Specific system design requirements for middleware 

 

2.1.1. Resiliency 

 

 In order to be resilient (which means to be able to deal with internal failures), the 

system needs to implement some forms of high availability (HA) or fault tolerance 

(FT). In general, HA and FT systems are designed with two different design principles 

in mind. Given the availability (A) formula (eq. 1), 

 

      
MTTRMTBF

MTBF
A

+

=  (1) 

 

71



HA aims to minimize downtime and IT service disruption; so the common goal in HA 

is to increase Mean Time Between Failure (MTBF) and decrease Mean Time to Repair 

(MTTR). HA solutions are in principle designed to have a high level of service uptime 

and may feature many elements, e.g: system management, live replacement (hot-

swap), component redundancy and failover mechanisms. To avoid single points of 

failure in the system can be difficult, because demands on such systems include not 

only ensuring the availability of important data, but also efficient resource sharing of 

the relatively expensive components. 

 Contrary to HA, which implies a service level in which both planned and 

unplanned outages do not exceed a small stated value [16], fault-tolerant (FT) systems 

tend to implement as much component redundancy and mirroring techniques as 

possible, in order to eliminate system failures completely (this is of course from 

client's perspective, in fact introducing redundant components will make component 

failures occur faster) [17], [18]. But FT has its problems; the performance degradation 

is another concern. As an example, let's discuss mirroring a single server. Besides 

handling all of the file transfer work for network users, the primary server may have to 

process additional I/O as it passes information along to the mirror server. This can also 

add substantial processor overhead if system usage is heavy. In effect, RAM, CPU and 

network performance is degraded.  

 

2.1.2. Scalability 

  

 Scalability is an architectural characteristic, which can be defined as a capability 

to cope and perform under an increased or expanding workload. A system that scales 

well will be able to maintain or even increase its level of performance or efficiency 

when tested by larger operational demands. In terms of message-queuing, or even 

publisher/consumer exchange system, this would mean the possibility of increasing 

processing speed or message throughput, user capacity, etc. 

 

2.1.3. Combination 

 

 A typical solution that requires either resiliency or scalability or both, involves 

clustering - symmetrical (all nodes have similar capabilities) or asymmetrical (nodes 

have different possibilities and inventory). Clustering in this context can be described 

as the use of two or more systems loosely coupled to provide system level redundancy 

– or provide more resources for operation. Because such systems are not directly 

coupled, they utilize standard network connections to communicate failovers. 

Typically, there is a middleware software solution to provide a failover mechanism 

between the two systems. But this middleware has to be protected with HA in mind as 

well. 
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2.2. Scalable and fault-tolerant middleware 

 

 For message broker, both HA and FT solutions were considered:  

 

a) HA (Active/Passive solution) 

 

in which the downtime of message broker (MB) service is expected in case of planned 

or unplanned unavailability of primary server. Queues and messages have to be 

persistent (disk-based), and message broker can be restarted elsewhere in the system. 

It is possible to base such solution on virtualization, where MB running host can be 

virtualized and rely on hypervisor built-in HA mechanism. This would cause 

hypervisor to run another instance of virtual machine (VM) in case of a failure of 

primary MB guest or even virtualization host. Another active/passive solution is to 

deploy clustering HA solution like pacemaker [20] in order to manage message broker 

and restart it (or migrate) when necessary, using available resources. 

 

b)  FT (Active/Active solution) 

 

means that the planned or unplanned downtime of message broker does not have any 

effect on queuing system. Typically it is implemented by MB leveraging clustering 

mechanism built-in RabbitMQ, which is developed strictly for such situations, and 

replicates queues on every RabbitMQ node in the cluster. RabbitMQ nodes failure 

monitoring, and IP load-balancing techniques are explained further in detail. 

Active/active solution can also be based on virtualization, where MB running host can 

be virtualized and, for example, marked as FT-demanding in VMware vCenter 

virtualisation environment. This would create a VM mirror image called ''replica'', 

updated in real-time, ready to be run in case of a failure of primary MB host. 

 

 Message broker, being one of the most important components of a distributed 

system, should be as fault-tolerant as possible. That means that the typical 

configuration for high availability (as described in 2.1.1) is not the best option. If the 

service is being restarted and prepared for operation restarting message broker on 

another node in case of failure, it would introduce a timeout span, but, what is worse, 

the message queue of failed message broker would be lost entirely.  

 The second solution described in option b) is a typical Active/Active topology and 

is recommended as more reliable and scalable at the same time. The virtualization 

variant was considered but not implemented, because it would introduce additional 

conditions and variables to the experiments and is a subject for another study. This 

paper's research is thus based on a cluster of RabbitMQ message brokers and its 

characteristics.  
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2.3. RabbitMQ cluster setup and operation 

 

 The clustering built into RabbitMQ was designed with two goals in mind:  

• allowing consumers and producers to keep running in the event of node 

failure, 

• linearly scaling messaging throughput by adding more nodes [1].  

With clustering, a client can connect as normal to any node within a cluster. If that 

node should fail, and the rest of the cluster survives, then the client should notice the 

closed connection, and should be able to reconnect to some surviving member of the 

cluster, as given in [12]. 

 The design decision that had to be made was an IP addressing of the cluster. As 

RabbitMQ documentation [12] describes, it is not generally advisable to hardcode 

node hostnames or IP addresses into client applications: this introduces inflexibility 

and will require client applications to be edited, recompiled and redeployed should the 

configuration of the cluster change or the number of nodes in the cluster change. As in 

general, this aspect of managing the connection to nodes within a cluster is beyond the 

scope of RabbitMQ itself. RabbitMQ's authors recommend a more abstracted 

approach, including a dynamic DNS service which has a very short TTL 

configuration, or a plain TCP load balancer (for example HAproxy [19]), or some sort 

of mobile IP achieved with pacemaker or similar technologies [20], [21]. For the 

purpose of this study, HAproxy was chosen as a load balancer between clients and 

cluster nodes. 

 Finally, testing environment needs to be monitored for two flow control 

mechanisms in RabbitMQ that may interfere with fast publishers. Network 

connections were configured with low speeds and the testing scenarios were 

implemented with those constraints in mind. 

 

3. Clustering scenarios 

 

 The maximization of the systems performance suggests that content of the queues 

should not be replicated throughout the cluster. The queue owner node has full 

information about it; other nodes in the cluster only know the queue's metadata and a 

pointer to the node where the queue actually is stored. This solution allows to limit 

storage space requirements and increase performance – replicating messages to every 

node would result in increase of network and disk load for every node, keeping the 

performance of the cluster the same (or worse) [1]. Regardless where publish is made, 

message will end up on the queue owner node. This leads to main performance 

optimization technique: to increase performance for every added node by spreading 

queues across nodes.   
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 On the contrary to performance-driven requirements for queues, there is a need for 

queue to be redundant when the main goal is to achieve high availability and fault 

tolerance. If a queue owner node fails, all of the messages within a queue are gone. An 

active-active redundancy option is possible; any queue can be mirrored. The mirrored 

queue is achieved by creating slave copies of the queue on other nodes in the cluster. 

It can be copied on every node, but the designer is able to specify a subset of nodes in 

the cluster for a queue to live on.  

Both situations are presented on Fig. 1. 

 

 
Fig. 1. Publishing to queues: a) on another node, b) to the mirrored queue 

 

The design of the cluster and its queues can support the following: 

• Creating fully mirrored queues on every node in order to achieve HA; create very 

efficient connection between nodes and create RAM nodes for quick distribution 

of messages, 

• Creating spread queues, but configure mirrored queues for at least one master and 

one slave (allowing for one node failure), 

• Creating fully spread queues and do not mirror them, but make them durable 

instead – all of the nodes are disk based, and in the event of failure, message 

broker is restarted elsewhere. 

 

Within above listed possibilities, 1) is a scenario for maximum fault-tolerance, 3) is 

a scenario allowing some downtime for maximum performance (which is HA 

scenario) and 2) presents a compromise between those two. 
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3.1. Cluster and queues configuration – preliminary testing 
 

Considering a three-node cluster, one can come up for specific testing scenarios 

that can provide comparable results for performance assessment [22]. Those results 

may provide an answer, whether given configuration is useful for a specific real-world 

scenario [23]. For preliminary testing purposes, and for re-creating typical real-world 

scenario, following implications were made: a) cluster may include up to three nodes, 

b) queues are created in the cluster as a single (non-mirrored), fully mirrored, and 

spread (mirrored to one node) queue, c) all of configuration scenarios are put to the 

three tests: 

• single publishes and consumes: there are single publishers and consumers for both 

queues, 

• balanced conversations: there are three publishers and three consumers for every 

queue (as many as cluster nodes), 

• many conversations: there are some publishers and some consumers. 
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Fig. 2. Performance-driven vs. Fault-Tolerant-driven testing scenarios 

 

Possible configurations for two queues implementation are presented on Fig. 2. On the 

left (scenario 1,2,3), there is no fault-tolerance; queues are not mirrored and the cluster 

is configured for performance scalability; on the right, queues are mirrored for 

resiliency – this is possible only using two nodes minimum; adding the third node 

creates two possibilities – mirroring queues on two nodes and adding one node for 
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scalability (scenario 5) or “spreading” mirrored queues on available nodes (scenario 

6). 

 

3.2. Preliminary testing results 
 

The equipment used for testing involved identical virtual machines (single core, 

4GB RAM, 8GB HDD) put on one hypervisor, which eliminated any possible 

networking issues. The hypervisor host was equipped with Intel i7 CPU and 32GB 

RAM. There was no resource overload. The most interesting observations were as 

follows.  

Conclusion A - there is practically no difference between the performance of 

publishing to single or multiple queues on one node. Scenario 1 is viable and does not 

introduce any performance problems. This question doesn’t need any more evaluation. 

 

 
Fig. 3. The comparison of two-queue, one-client-per-queue publishes and consumes using scenario 2 and 

scenario 3 

 

Conclusion B - the results of scenario 2 and scenario 3 (there is more than one node in 

the cluster) show significant improvement of performance over scenario 1. Fig. 3 

presents exemplary results of single publisher and consumer for both queues, 

summarized for comparison. These results are expected, however designer has to keep 

in mind such configuration is not fault-tolerant – if a node fails, the queue is no longer 

available for publishing or consuming. The difference between scenario 2 and scenario 

3 (additional node for scaling) results is interesting and was immediately chosen a 

subject for another study – adding supplementary node allowed faster publishing, but 

the consuming rate dropped, as the cluster nodes communication introduced an 

overhead. In effect, whole system performance was kept on the same level.  As this 
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design could be more appropriate with large number of publishers and consumers, the 

decision to test multiple scenarios was made. 

 

 
Fig. 4. Mirrored queues performance results example 

 

For the scenarios 4,5,6 (mirrored queues for resiliency), the performance of sending 

and receiving to mirrored queues is significantly worse. Fig. 4 shows typical results 

(scenario 4 is shown). The difference between publishing and consuming to the master 

(owner) node compared to publishing and consuming from the slave node is as 

expected - publishers are unaffected, but the consumers suffer from intra-cluster traffic 

(master-to-slave) overhead. Most important results summary is shown on Tab. 1. 

 

 
Scenario Scenario 3 

(performance) 

Scenario 5 

(mirrored) 

Scenario 6 

(spread mirrors) 

Average publish 

rate [msg/s] 

 

33296.59 

 

8553.28 

 

12668.86 

Average consume 

rate [msg/s] 

 

16162.00 

 

5087.00 

 

8231.55 

 
Tab. 1. Summary for most important scenarios (10 publishers, 10 consumers) 

 

Most important observations are, as indicated by multiple tests (ca. 50 re-runs), the 

performance of single queue drops significantly when this queue is mirrored 

throughout entire cluster for fault-tolerance. Full mirrored queue is therefore not as 

good architectural choice as it would seem, especially if there are frequent moments of 

only one producer active. The performance of spread queues is about 10%-20% 

minimum better than full–mirrored queues on a three-node cluster. There is no 
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significant difference in RAM / disk node effect on mirroring. Spread queues are 

stable; performance degradation is however visible when receiving by many clients at 

once. 

 

 

3.3. Detailed evaluation 

 

Upon further examination of the preliminary test results, the most important 

observation was that the results are not always the same: 

a) different master-slave queue configuration combinations produced different 

performance results, 

b) even non-mirrored queues had different results as well. 

The conclusion was, that this is the impact of load balancing the traffic between the 

clients and cluster nodes. To be more specific, the message publishing or consuming 

rate depends whether the client was redirected to the: 

• ''master'' node (the node which is the master for the specific queue being used), 

• ''slave'' node (the node which specific queue is being replicated onto), 

• ''empty'' node (the node which is part of the cluster but the queue resides on other 

nodes) 

If the client is redirected onto ''master'' or ''slave'' nodes, the published messages do 

not need to be communicated to every node in the cluster, which has good effect on 

performance. Otherwise, message sending/receiving rates drop. 

 

For detailed information on this impact, the cluster was set up with different 

architectures - using disk-based and RAM-based queues. Every configuration assured 

that if queue is mirrored, it always resides on at least one disk-based node, and 

messages are written to disk and can be retrieved even after power failure. For such 

cluster, queues were tested for performance while load balancer was configured with 

alternative scenarios:  

• Master node not receiving connections from clients (“no master”), 

• Master and slave node not receiving connections from clients (“only empties”), 

• Queues are ''mirrored'' to every other node in the cluster (“only slaves”) 

 

The effect of load-balancing is shown on Fig. 5 and Fig. 6. In this test, six clients 

were sending messages to cluster and were load-balanced on any cluster node. On Fig. 

5, the connection to “master” node is being served first, an every other connection is 

suppressed; this causes the entire exchange to last 20s. On Fig. 6, load balancer 

omitted “master” node. The message sending rates were much more ‘fair’ for every 

client. Overall time of sending was 11s. 
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Fig. 5. Performance of six clients sending to cluster, one to “master” node. Overall time: 20s 

 

 
 

Fig. 6. Performance of six clients sending to cluster, no connection to “master” node. Overall time: 11s 

 

Similar load-balancing tests have shown, that there is unfair balance between clients 

receiving messages from “slave” and “empty” nodes. The “slave” nodes served clients 

only after every other connection ended (Fig. 7). 
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Fig. 7. Performance of six clients sending to cluster of “master”, “slave” and “empty” nodes example. 

 

3.4. Proposed cluster configuration 
 

The extensive testing led to following observations and design proposals: 

• During receiving messages, clients connected to “slave” nodes are treated unfair; 

• For fair sending, “master” node should not be serving clients; 

 

The most proper cluster configurations should thus utilize layers of nodes: 

- Fault Tolerance Layer, that ensures reliability and endurance of messages and 

queues; 

- Scalable Services Layer, that contains easily scalable and configurable nodes. 

 

Proposed architecture is shown on Fig. 8. Two nodes are not servicing any clients 

and every queue is configured on those two nodes (in “master” and “slave” modes, 

which can be described as “spread” queues as defined in 2.1), in addition to n “empty” 

nodes of the cluster. 
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Fig. 8. Proposed two-layer cluster configuration. 

 

 

4. Conclusions 

 

This paper shows there are many considerations for building clustered middleware 

and implementing scalable yet fault-tolerant system. Queues need to be distributed 

evenly, or internal transfers within the cluster will cause performance to drop, 

especially for receiving clients. There is, however a way to mirror queues 

asymmetrically, which is shown by experimental results in this paper.  

The relevant studies indicate that many more aspects have to be taken under 

consideration – for example, the disk-based nodes compared to RAM-based nodes 

performance, or the expected distribution of the clients (publishers and consumers) but 

results show there is a possibility to create a design principles for specific clients count 

and message rates requirements and form a two-layered cluster configuration. This is 

authors’ contribution in discussing solutions that combine both requirements, as it is a 

real industry scenario.  

To summarize results, the study shows that while typical single queues on clustered 

nodes are key to performance, if the requirements include fault-tolerance, performance 

can still be improved by ''spreading'' queues to be mirrored only by one more node, as 

N+1 rule dictates.  
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Wzorce wysokodost�pnej i odpornej na awarie architektury  
dla klastra serwerów middleware 

 

Streszczenie 
 

W pracy przedstawiono wyniki oceny wydajno�ci ró�nych konfiguracji systemów spełniaj�cych 

rol� rozdzielacza wiadomo�ci (Message Broker), które prowadz� do wyznaczenia konkretnych 

wytycznych architektonicznych dla takich systemów. Przykład zrealizowano przy u�yciu 

przykładowego oprogramowania serwera komunikacyjnego middleware – RabbitMQ, 

zestawionego w konfiguracji wysokiej dost�pno�ci. RabbitMQ jest systemem kolejkowania 

wiadomo�ci, który realizuje funkcje po�rednicz�ce (ang. middleware) dla systemów rozproszonych, 

u�ywaj�c do tego zadania zaawansowanych protokołów kolejkowania wiadomo�ci. W artykule 

omówiono zagadnienia projektowe dotycz�ce skalowalno�ci i wysokiej dost�pno�ci, jak równie� 

przedstawiono mo�liwe topologie klastrów i ich wpływ na zdefiniowane parametry działania. 

Poniewa� wymagania HA i skalowalno��, a zatem wydajno��, s� w konflikcie, rozpatrywano 

scenariusze z ró�nym wykorzystaniem kolejek w pełni redundantnych oraz dublowanych.  

W artykule przedstawiono wyniki pomiarów wydajno�ci dla niektórych topologii, jak równie� 

konkluzje co do drogi do osi�gni�cia optymalnej architektury. 
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