PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A conceptual flotation circuit for fine coal processing based on combination of the tree analysis and kinetic data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research study, we focus on the tree test results as well as the first-order kinetic model to evaluate flotation test data to propose a conceptual design of a flotation circuit for a specific coal sample. Results from the tree test showed it was possible to achieve a product with ash content less than 10% with 8% as combustible recovery and indicated for this coal sample, to obtain low ash – low recovery condition. Kinetic test results showed some of the streams had the same constant, so it could combine streams with similar rates according to configuration aspects. The proposed circuit includes stages (1- rougher, 2- rougher -scavenger, 3- cleaner, 4- cleaner -scavenger, and 5-recleaner) and recleaner concentrate indicated as the final product and rougher -scavenger tailings and cleaner -scavenger tailings also indicated as a final tailing. It is worth noting the proposed circuit is a conceptual design, so the validation of data on a larger scale for the obtainment of the optimized circuit is crucial.
Rocznik
Strony
art. no. 167948
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
  • Academic Centre for Education, Culture and Research (ACECR), Kerman, Iran
  • Academic Centre for Education, Culture and Research (ACECR), Kerman, Iran
Bibliografia
  • AHMED, N., JAMESON, G. J. 1989. Flotation Kinetics. Mineral Processing and Extractive Metallurgy Review 5(1-4), 77-99.
  • BAKKER, C., MEYER, C., DEGLON, D. 2010. The development of a cavern model for mechanical flotation cells. Minerals Engineering 23(11-13), 968-972.
  • CASTRO, S., MIRANDA, C., TOLEDO, P., LASKOWSKI, J. 2013. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. International Journal of Mineral Processing 124, 8-14.
  • BOURNIVAL, G., ATA, S., JAMESON, G. J. 2017. Bubble and froth stabilizing agents in froth flotation. Mineral Processing and Extractive Metallurgy Review 38(6), 366-387.
  • LI, C., ZHEN, K., HAO, Y., ZHANG, H. 2018. Effect of dissolved gases in natural water on the flotation behaviour of coal. Fuel 233, 604-609.
  • HODOUIN, D., FLAMENT, F., 1991. Influence of data collection and conditioning strategies on the significancy of performance indices in mineral processing plants. Proceedings of the International Symposium on Evaluation and Optimization of Metallurgical Performance SME=AIME
  • KETATA, C., ROCKWELL, M. C. 2001. Stochastic evaluation of sampling errors in mineral processing streams. CIM bulletin 94(1056), 88-91.
  • WILLS, BARRY A., NAPIER-MUNN, T., 2006. Mineral Processing Technology. Amsterdam: Elsevier, 71–74.
  • IKUMAPAYI, F., K. H. RAO. 2015. Recycling process water in complex sulfide ore flotation: Effect of calcium and sulfate on sulfide minerals recovery. Mineral Processing and Extractive Metallurgy Review 36(1), 45–64.
  • RULYOV, N., Т. NESSIPBAY, T. DULATBEK, S. LARISSA, K. ZHAMIKHAN. 2018. Effect of microbubbles as flotation carriers on fine sulphide ore beneficiation. Mineral Processing and Extractive Metallurgy Transactions of Institution of Mining and Metallurgy. Section C 127(3), 133–39.
  • FARROKHPAY, S., L. FILIPPOV, D. FORNASIERO. 2020. Flotation of fine particles: A review. Mineral Processing and Extractive Metallurgy Review, 1–11.
  • UÇURUM, M., BAYAT, O. 2007. Effects of operating variables on modified flotation parameters in the mineral separation. Separation and Purification Technology 55(2), 173-181.
  • CHAVES, A. P., RUIZ, A. S. 2009. Considerations on the kinetics of froth flotation of ultrafine coal contained in tailings. International Journal of Coal Preparation and Utilization 29(6), 289-297.
  • YINGLING, J. C. 1993. Parameter and configuration optimization of flotation circuits, part I. A review of Prior work. International Journal of Mineral Processing 38(1-2), 21-40.
  • LYNCH, A. J., JOHNSON, N. W., MANLAPIG, E. V., THORNE, C. G., 1981. Mineral and coal flotation circuits: Their simulation and control. Amsterdam, Elsevier.
  • GUPTA, A. K., BANERJEE, P. K., DUTTA, A., MISHRA, A. (2007). Recovery of clean coal fines through a combination of gravity concentrator and flotation processes. Mineral Processing and Extractive Metallurgy Review 28(4), 299-319.
  • PRATTEN, S.J., BENSLY, C.N., NICOL, S.K. 1989. An evaluation of the flotation response of coals. International Journal of Mineral Processing 27(3-4), 243-262.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-568fbd22-f246-49b0-b42c-d09a75179419
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.