PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical Model of CAI Test for Fibre-Reinforced Polymer Plate

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents numerical simulations of laminates subjected to Compression After Impact (CAI) testing including delamination modelling. Different model of impact damages of laminate were considered. Progressive damage analysis have been employed and different failure criteria have been applied. For each simulation failure load has been estimated as same as the position of damages at destroyed layer. Finally, obtained numerical results were compared with experimental data from referential paper.
Słowa kluczowe
Rocznik
Strony
277--293
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Lodz University of Technology Stefanowskiego 1/15, Łódź, Poland
  • Lodz University of Technology Stefanowskiego 1/15, Łódź, Poland
autor
  • Lodz University of Technology Stefanowskiego 1/15, Łódź, Poland
autor
  • Department of Strength of Materials Lodz University of Technology Stefanowskiego 1/15, Łódź, Poland
Bibliografia
  • [1] Adams, D.: Testing Tech: Compression After Impact Testing, High-Performance Composites, 2007.
  • [2] Kursun, A., Senel, M. and Enginsoy, H.: Experimental and numerical analysis of low velocity impact on a preloaded composite plate, Advances in Engineering Software, 90, 41–52, 2015.
  • [3] Compression After Impact testing, ‘http://www.zwick.com/en/applications/composites/fiber–composites/compression-after-impact.html’, Accessed on 2016.
  • [4] Sztefek, P. and Olsson, R.: Nonlinear compressive stiffness in impacted composite laminates determined by an inverse method, Composites. Part A: Applied Sciences and Manufacturing, 40, 3, 260–272, 2009.
  • [5] Aymerich, F. and Priolo, P.: Characterization of fracture modes in stitched and unstitched cross–ply laminates subjected to low–velocity impact and compression after impact loading, Journal of Impact Engineering, 35, 591–608, 2008.
  • [6] Cartie, D. D. R. and Irving, P. E.: Effect of resin and fibre properties on impact and compression after impact performance of CFRP, Composites. Part A, 33, 483–93, 2002.
  • [7] Zhang, X., Hounslow, L. and Grassi, M.: Improvement of low–velocity impact and compression–after–impact performance by z–fibre pinning, Composites Science and Technology, 66, 2785–2794, 2006.
  • [8] Li, N. and Chen, P. H.: Micro–macro FE modelling of damage evolution in laminated composite plates subjected to low velocity impact, Composite Structures, 147, 111–121, 2016.
  • [9] Schwab, M., Todt, M., Wolfahrt, M. and Pettermann, H. E.: Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements, Composites Science and Technology, 128, 131–137, 2016.
  • [10] Dębski, H., Kubiak, T. and Teter, A.: Buckling and postbuckling behaviour of thin–walled composite channel section column, Composite Structures, 100, 195–204, 2013.
  • [11] Harvey, S.: Composites Seminar 2012, Seattle, 2012.
  • [12] ANSYS Inc.: ANSYS Mechanical APDL Structural Analysis Guide, Release 15.0, 2013.
  • [13] Petit, S., Bouvet, C., Bergerot, A. and Barrau, J-J.: Impact and compression after impact experimental study of a composite laminate with a cork thermal shield, Composites Science and Technology, 67, 3286–3299, 2007.
  • [14] Barbero, E. J., Cosso, F. A., Roman, R. and Weadon, T. L.: Determination of material parameters for Abaqus progressive damage analysis of E–glass epoxy laminates, Composites, 46, 211–220, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-568e5216-b25c-4049-b956-e67157c10df5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.