PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Influence of the Cooling Method Used During Grinding on the Operating Properties of Ceramic Grinding Wheels Made with Different Abrasives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of a study of the performance characteristics of ceramic grinding wheels during peripheral grinding of flat surfaces carried out using different methods of supplying cooling and lubricating fluid (coolant). In the study, T1 type grinding wheels were used, differing in the type of abrasive used in their construction. The abrasive consisted of mixtures with different volume percentages of: 1) grains of conventional white electro-corundum, 2) grains of submicrocrystalline sintered corundum produced by sol-gel technology, 3) microcrystalline sintered ceramic grains with RECERAMAX™ RT microclasters from RECKEL. Specimens made of 145Cr6 tool steel (60±1 HRC) were ground using coolant feeding by flood method and MQL (Minimum Quantity Lubrication) method. During the study, the components of grinding force (Fn, Ft), radial loss of the grinding wheel and roughness of the ground surface were measured, which made it possible to determine the volumetric wear of the grinding wheel Vs, the total grinding power P, and then calculate the grinding indicators G and Ks. The obtained values of the G index indicate that, regardless of the type of grinding wheel used, a higher relative grinding efficiency was obtained during grinding with the delivery of coolant by the MQL method. The highest values of this index were obtained in the case of the grinding process carried out with a grinding wheel containing RECERAMAX™ RT abrasive. The Ks index confirmed the best performance of the mentioned grinding wheel. Since its value also depends on the total grinding power P and the surface roughness parameter Ra, the grinding process carried out with this grinding wheel is additionally characterized by a better quality of the obtained surface and lower energy consumption.
Słowa kluczowe
Twórcy
  • Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-537 Łódź, Poland
  • Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-537 Łódź, Poland
  • Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-537 Łódź, Poland
  • Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-537 Łódź, Poland
  • Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-537 Łódź, Poland
Bibliografia
  • 1. Kruszyński B.W., Wójcik R. Residual stress in grinding. Journal of Materials Processing Technology 2001; 109: 254–257. DOI: 10.1016/S0924- 0136(00)00807-4
  • 2. Stachurski W., Sawicki J., Januszewicz B., Rosik R. The influence of the depth of grinding on the condi- tion of the surface layer of 20MnCr5 steel ground with the minimum quantity lubrication (MQL) method. Materials 2022; 15, 1336. DOI: 10.3390/ ma15041336
  • 3. Marinescu I.D., Hitchiner M.P., Uhlmann E., Rowe W.B., Inasaki I. Handbook of machining with grinding wheels. Second Edition. CRC Press, 2016.
  • 4. Rowe W.B. Principles of modern grinding technology. Second Edition. Elsevier, 2014.
  • 5. Oczoś K.E., Porzycki J. Szlifowanie. WNT, 1986.
  • 6. Żyłka Ł., Babiarz R., Płodzień M., Sułkowicz P., Bobko W., Rembiasz R. Zużycie ściernicy w szlifowaniu CFG. Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika 2017; 89(295)3: 409– 416. DOI: 10.7862/rm.2017.38
  • 7. Grzesik W., Kruszyński B., Ruszaj A. Surface in- tegrity of machined surfaces. In: Surface integrity in machining, J.P. Davim (red.). Springer-Verlag, 2010.
  • 8. Stachurski W., Sawicki J., Krupanek K., Nadolny K. Application of numerical simulation to determine ability of air used in MQL method to clean grinding wheel active surface during sharpening of hob cutters. International Journal of Precision Engineering and Manufacturing-Green Technology 2021; 8: 1095–1112. DOI: 10.1007/s40684-020- 00239-x
  • 9. Nadolny K., Kieraś S. Experimental studies on the centrifugal MQL-CCA method of applying coolant during the internal cylindrical grinding process. Materials 2020; 13, 2383. DOI: 10.3390/ ma13102383
  • 10. Nadolny K., Kieraś S., Sutowski P. Modern approach to delivery coolants, lubricants and antiadhesives in the environmentally friendly grinding process. International Journal of Precision Engineering and Manufacturing-Green Technology 2021; 8: 639–663. DOI: 10.1007/s40684-020- 00270-y
  • 11. Silva L.R., Corrêa E.C.S., Brandão J.R., De Ávila. R.F. Environmentally friendly manufacturing: Behavior analysis of minimum quantity of lubricant – MQL in grinding process. Journal of Cleaner Production 2013. DOI: 10.1016/j.jclepro.2013.01.033
  • 12. Arsene B., Pasca Pascariu G., Sarbu F.A., Barbu M., Calefariu G. Green manufacturing by using organic cooling-lubrication fluids. In: IOP Conference Series: Materials Science and Engineering 2018; 399, 012001. DOI: 10.1088/1757-899X/399/1/012001
  • 13. Said Z., Gupta M., Hegab H., Arora N., Khan A.M., Jamil M., Bellos E. A comprehensive review on minimum quantity lubrication (MQL) in maching process using nano-cutting fluids. International Journal of Advanced Manufacturing Technology 2019; 105: 2057–2086.
  • 14. Srikant R.R., Rao P.N. Use of vegetable-based cutting fluids for sustainable machining. In: Sustainable machining, J.P. Davim (red.), Springer, 2017.
  • 15. Lopes J.C., Garcia M.V., Volpato R.S., Mello H.J., Ribeiro F.S.F., Sanchez L.E.A., Rocha K.O., Neto, L.D., Aguiar P.R., Bianchi E.C. Application of MQL technique using TiO2 nanoparticles compared to MQL simultaneous to the grinding wheel cleaning jet. International Journal of Advanced Manufacturing Technology 2020; 106: 2205–2218.
  • 16. Sawicki J., Kruszyński B., Wójcik R. The influence of grinding conditions on the distribution of residual stress in the surface layer of 17CrNi6-6 steel after carburizing. Advances in Science and Technology Research Journal 2017; 11(2): 17–22. DOI: 10.12913/22998624/67671
  • 17. Sharma V.S., Singh G., Sørby K. A review on minimum quantity lubrication for machining processes. Materials and Manufacturing Processes 2015; 30/8: 935–953.
  • 18. Ebbrell S., Woolley N.H., Tridimas Y.D., Allanson D.R., Rowe W.B. The effects of cutting fluid application method on the grinding process. International Journal of Machine Tools & Manufacture 2000; 40: 209–223.
  • 19. Bhuyan M., Sarmah A., Gajrani K.K., Pandey A., Thulkar T.G., Sankar M.R. State of art on minimum quantity lubrication in grinding process. Materials Today: Proceedings 2018; 5: 19638–19647.
  • 20. Rabiej F., Rahimi A.R., Hadad M.J., Ashrafijou M. Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modelling and optimization. Journal of Cleaner Production 2015; 86(1): 447–460.
  • 21. Tawakoli T., Hadad M.J., Sadeghi M.H., Daneshi A., Stöckert S., Rasifard A. An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication – MQL grinding. International Journal of Machine Tools & Manufacture 2009; 49: 924–932. https:// doi.org/10.1016/j.ijmachtools.2009.06.015
  • 22. Silva L.R., Bianchi E.C., Catai R.E., Fusse R.Y., França T.V., Aguiar P.R. Study on the behaviour of the minimum quantity lubricant – MQL technique under different lubricating and cooling conditions when grinding ABNT 4340 steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2005; 27(2): 192–199.
  • 23. Leonarcik R., Urbaniak M., Dębkowski R. Method for assessing the grinding wheels operational properties. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20(4): 531–541. DOI: 10.17531/ein.2018.4.4
  • 24. Maslov E.N. Teorija šlifovanija materialov. Mašinostroenie, 1974.
  • 25. Manoj Kumar K, Amitava G. On grinding force ratio, specific energy, G-ratio and residual stress in SQCL assisted grinding using aerosol of MWCNT nanofluid. Machining Science and Technology 2021; 25(4): 585–607. DOI: 10.1080/10910344.2021.1903920
  • 26. Wu W., Li C., Yang M, Zhang Y., Jia D., Hou Y., Li R., Cao H., Han Z. Specific energy and G ratio of grinding cemented carbide under different cooling and lubrication conditions. International Journal of Advanced Manufacturing Technology 2019; 105: 67–82. DOI: 10.1007/s00170-019-04156-5
  • 27. Niżankowski Cz. Wpływ struktury ścierniw z korundów spiekanych na zdolność ścierną ściernic ze szklanokrystalicznym spoiwem ceramicznym. In: Obróbka ścierna, A. Barylski (red.) 2011; Gdańsk, 81–90
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-568ab27e-bf15-491d-bfa1-b0af2b92c0fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.