PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of flow and damming on water quality of the mountain Raba River (southern Poland) : long-term studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ przepływu i piętrzenia na jakość wody górskiej rzeki Raby (południowa Polska) : badania wieloletnie
Języki publikacji
EN
Abstrakty
EN
Climate change, manifested by long term periods of drought to heavy rainfall, may remarkably modify river flow regimes. We hypothesize that flow prevailing in a given year determines water chemistry of the Carpathian Raba River above and below Dobczyce Reservoir (southern Poland), used for drinking purposes. Based on the mean annual river flow for years 1991-2017, hydrologically dry (HD), hydrologically average (HA) and hydrologically wet (HW) years were distinguished. We found significant differences in the values of most studied physicochemical parameters of river water above and below the reservoir between studied hydrological years (for a period of April‒November). In HD years, the water above the dam had significantly higher temperature and values of conductivity (point pollution source, groundwater inflow), while lower ones of nutrients NO3- and P-tot (diffuse pollution) compared to those in HA and/or HW years. The best GLM models for mean monthly flows above and below the dam include 3-5 factors among which conductivity and NO3 concentration were always present. The reservoir in different ways influences the water chemistry below the dam in HD, HA and HW years. The impact of flow on the water quality in hydrologically varied years is discussed. The obtained results are important for appropriate management in catchment basins of mountain rivers and the protection of dam reservoirs against the eutrophication processes in changing climate and flow regime.
PL
Zmiany klimatu, przejawiające się długotrwałymi okresami suszy lub obfitych opadów, mogą znacząco zmienić roczny reżim przepływów. Stawiamy hipotezę, że przepływ dominujący w danym roku determinuje chemizm wody rzeki górskiej. Celem pracy było określenie (1) różnic w chemizmie wody górskiej rzeki pomiędzy latami hydrologicznie suchymi (HD), przeciętnymi (HA) i mokrymi (HW), (2) wpływu zbiornika zaporowego na chemię wody odpływającej rzeki w różnych latach hydrologicznych, (3) parametrów fizyczno-chemicznych związanych ze średnim miesięcznym przepływem wody w latach HD, HA i HW. Badania prowadzono w karpackiej rzece Rabie powyżej i poniżej Zbiornika Dobczyckiego w południowej Polsce. W oparciu o średni roczny przepływ rzeki z wielolecia 1991–2017 wyróżniono lata HD, HA i HW. Przeanalizowano zmiany parametrów fizyczno- chemicznych wody (temperatura, przewodność elektrolityczna, pH, tlen rozpuszczony, nasycenie tlenem, BZT5, biogeny: NO3-, NH4+, P-tot) pobieranych co miesiąc w okresie kwiecień–listopad. Stwierdziliśmy istotne różnice w chemizmie wody rzeki między badanymi latami hydrologicznymi. W latach HD wody powyżej zbiornika miały istotnie wyższą temperaturę i wartości przewodności elektrolitycznej, natomiast niższe wartości biogenów NO3- i P-tot (zanieczyszczenie obszarowe) w porównaniu do lat HA i/lub HW. Zbiornik w różny sposób kształtował skład chemiczny wody rzeki poniżej zapory w latach HD, HA i HW. Najlepsze modele GLM dla średnich miesięcznych przepływów obejmowały 3–5 czynników, wśród których zawsze występowały przewodność elektrolityczna i stężenia NO3-. Uzyskane wyniki mają istotne znaczenie dla właściwego gospodarowania w zlewniach rzek górskich i ochrony zbiorników zaporowych przed procesami eutrofizacji.
Rocznik
Strony
31--40
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
  • Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
Bibliografia
  • 1. APHA. (1992). Standard methods for the examination of water and wastewater (18th ed), American Public Health Association, Washington 1992
  • 2. Berkamp, G., McCartney, M., Dugan, P., McNeely, J. & Acreman, M. (2000). Dams, ecosystem functions and environmental restoration thematic review II.1 prepared as an input to the World Commission on Dams, Cape Town 2000 (http: www.dams.org (28.05.2021).
  • 3. Blahušiaková, A., Matoušková, M., Jenicek, M., Ledvinka, O., Kliment, Z., Podolinská, J. & Snopková, Z. (2020). Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe, Hydrol Sci J, 65, pp. 1–14. DOI: 10.1080/02626667.2020.1784900
  • 4. Bouraoui, F. & Grizzetti, B. (2011). Long term change of nutrient concentrations of rivers discharging in European seas, Sci Total Environ, 409, pp. 4899-4916. DOI: 10.3390/w12030779.
  • 5. Bouraï, L., Logez, M., Laplace-Treyture, Ch. & Argillier, Ch. (2020). How do eutrophication and temperature interact to shape the community structures of phytoplankton and fish in lakes?, Water, 12, 3, pp. 779. DOI: 10.3390/w12030779
  • 6. Bowes, M.J., Jarvie, H.P., Halliday, S.J., Skeffington, R.A., Wade, A.J., Lowenthal, M., Gozzard, E., Newman, J.R. & Palmer-Felgate, E.J. (2015). Characterising phosphorus and nitrate inputs to a rural river using high frequency concentration--flow relationships, Sci Total Environ, 511, pp. 608-620. DOI: 10.1016/j.scitotenv.2014.12.086
  • 7. Burnham, K.P. & Anderson, D.R. (2004). Multimodel inference. Understanding AIC and BIC in model selection, Sociol Method Res, 33, pp. 261-304. DOI: 10.1177/0049124104268644
  • 8. EEA. (2005). Source apportionment of nitrogen and phosphorus inputsinto the aquatic environment. EEA Report No. 7⁄2005. European Environment Agency, Copenhagen 2005.
  • 9. Faithful, J.W. & Griffiths, D.J. (2000). Turbid flow through a tropical reservoir (Lake Dalrymple, Queensland, Australia): Responses to a summer storm event, Lakes Reserv Res Manag, 5, pp. 231-247.
  • 10. Freckleton, R.P. (2011). Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error, Behav Ecol Sociobiol, 65, pp. 91-101. DOI: 10.1007/s00265-010-1045-6
  • 11. Genkai-Kato, M. & Carpenter, S.R. (2005). Eutrophication due to phosphorus recycling in relation to lake morphometry, DOI: 10.1890/03-0545.
  • 12. Geraldes, A.M. & Boavida, M.-J. (2005). Seasonal water level fluctuations: Implications for reservoir limnology and management, Lakes Reserv Res Manag, 10, pp. 59–69, DOI: 10.1111/j.1440-1770.2005.00257.x.
  • 13. Hlásny, T., Trombik, J., Dobor, L., Barcza Z. & Barka I. (2016). Future climate of the Carpathians: climate change hot-spots and implications for ecosystems, Reg Environ Change 16, pp. 1495-1506. DOI: 10.1007/s10113-015-0890-2
  • 14. Kasza, H. (2009). [Dam reservoirs. Importance – eutrophication – protection], Wydawnictwa Akademii Techniczno-Humanistycznej, Bielsko-Biała 2009. (in Polish)
  • 15. Kędra, M. & Wiejaczka, Ł. (2018). Climatic and dam-induced impacts on river water temperature: Assessment and management implications, Sci Total Environ, 626, pp. 1474-1483. DOI: 10.1016/j.scitotenv.2017.10.044
  • 16. Kijowska-Strugała, M., Wiejaczka, Ł. & Kozłowski, R. (2016). Influence of reservoirs on the concentration of nutrients in the water of mountain rivers, Ecol Chem Eng S, 23, 3, pp. 413–424, DOI: 10.1515/eces-2016-0029.
  • 17. Mazurkiewicz-Boroń, G. 2002. Factors of eutrophication processes in sub-mountain dam reservoirs, Supplementa ad Acta Hydrobiol, 2, pp. 1-68. (in Polish with English summary).
  • 18. Maavara, T., Parsons, C.T., Ridenour, C., Stojanovic, S., Dürr, H.H., Powley, H.R. & Van, C.P. (2015). Global phosphorus retention by river damming, P Natl Acad Sci USA, 112, pp. 15603-15608. DOI: 10.1073/pnas.1511797112
  • 19. Mazierski, J. & Kostecki, M. 2021. Impact of the heated water discharge on the water quality in a shallow lowland dam reservoir. Arch Environ Prot, 47, 2, pp. 29-46, 10.24425/aep.2021.137276
  • 20. Nilsson, C. & Renöfält, B.M. (2008). Linking flow regime and water quality in rivers: A challenge to adaptive catchment management, Ecol Soc, 13, 2, 18. (http://www.ecologyandsociety.org/vol13/iss2/art18/(28.05.2021))
  • 21. Pawełek, J. & Spytek, M. (2006). Biogenic loads carried by the Raba River into the Dobczyce Reservoir in 2002–2005, Infrastruktura i Ekologia Terenów Wiejskich, 3, pp. 107-116. (in Polish with English summary)
  • 22. Punzet, J. (1969). Hydrological characteristics of the river Raba, Acta Hydrobiol, 11, pp. 423-477. (in Polish with English summary)
  • 23. Schneider, C., Laizé, C.L.R., Acreman, M. & Flörke, M. (2013). How will climate change modify river flow regimes in Europe?, Hydrol Earth Sys Sci, 17, 1, pp. 325-339. DOI: 10.5194/hess17-325-2013
  • 24. Soja, R. & Wiejaczka, Ł. (2014). The impact of a reservoir on the physicochemical properties of water in a mountain river, Water Environ J, 28, pp. 473-482. DOI: 10.1111/wej.12059
  • 25. Szalińska, E. & Dominik, J. (2006). Water quality changes in the Upper Dunajec Watershed, Southern Poland, Pol J Environ Stud, 15, pp. 327-224.
  • 26. StatSoft 2014. STATISTICA (data analysis software system), v. 12. http://www.statsoft.pl Accessed 7 Jan 2016.
  • 27. Szalińska, E., Zemełka, G., Kryłów M., Orlińska-Woźniak P., Jakusik E. & Wilk, P. (2021). Climate change impacts on contaminant loads delivered with sediment yields from different land use types in a Carpathian basin. Sci Total Environ, 755, pp. 142898. DOI: 10.1016/j.scitotenv.2020.142898
  • 28. Szarek-Gwiazda, E., Mazurkiewicz-Boroń, G., Gwiazda, R. & Urban, J. (2018). Chemical variability of water and sediment over time and along a mountain river subjected to natural and human impact, Knowl Manag Aquat Ecosyst, 419, 5. DOI: 10.1051/kmae/2017056
  • 29. Szarek-Gwiazda, E., Mazurkiewicz-Boroń, G. & Wilk-Woźniak, E. (2009). Changes of physicochemical parameters and phytoplankton in water of a submountain dam reservoir – effect of late summer stormflow, Arch Environ Prot, 35, 4, pp. 79-91.
  • 30. Szarek-Gwiazda, E. (2013). Factors influencing the concentrations of heavy metals in the Raba River and selected Carpathian dam reservoirs, Studia Naturae, 60, pp. 1–146. (in Polish with English summary)
  • 31. Wang, F., Maberly, S.C., Wang, B. & Liang, X. (2018). Effects of dams on riverine biogeochemical cycling and ecology, Inland Waters, 8, 2, pp. 130-140. DOI: 10.1016/j.chemgeo.2018.04.006
  • 32. Wetzel, R.G. (2001). Limnology, lake and reservoir ecosystem (3rd Edition), Academic Press, Elsevier Science, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo, 2001.
  • 33. Wiatkowski, M. & Wiatkowska, B. (2019). Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis, Arch Environ Prot, 45, 1, pp. 26-41, DOI: 10.24425/aep.2019.126339.
  • 34. Wilk-Woźniak, E. (2009). [Population changes in the communities of planktonic algae and their life strategies under the conditions of artificially altered aquatic ecosystems]. Studia Nature, 55, pp. 1-132. (in Polish with English summary)
  • 35. Wilk-Woźniak, E., Krztoń, W. & Górnik, M. (2021). Synergistic impact of socio-economic and climatic changes on the ecosystem of a deep dam reservoir: case study of the Dobczyce dam reservoir based on a 30-year monitoring study, Sci Total Environ, 756 (144055). DOI: 10.1016/j.scitotenv.2020.144055
  • 36. Woyciechowska, J. & Dojlido, J. (1982). Changes in the quality surface waters under the influence of the hydrotechnical constructions, Gosp Wod, 5, pp. 47-50. (in Polish)
  • 37. Yamamoto, Y. & Nakahara, H. (2005). The formation and degradation of cyanobacterium Aphanizomenon flos-aquae blooms: the importance of pH, water temperature, and day length, Limnology 6, 1, pp. 1-6. DOI: 10.1007/s10201-004-0138-1.
  • 38. Winton, R.S., Calamita, E. & Wehrli, B. (2019). Reviews and syntheses: Dams, water quality and tropical reservoir stratification, Biogeosciences, 16, pp. 1657-1671. DOI: 10.5194/bg-16-1657-2019
  • 39. Withers, P.J.A. & Haygarth, P.M. (2007). Agriculture, phosphorus and eutrophication: a European perspective. Soil Use Manage, 23(Suppl. 1), pp. 1-4. DOI: 10.1111/j.1475-2743.2007.00116.x
  • 40. Wypych, A., Ustrnul, Z. & Schmatz, D.R. (2018). Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. J Mt Sci, 15, pp. 237–253. DOI: 10.1007/s11629-017-4374-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56834b89-e00b-4dcc-9bf2-c54d417907f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.