PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PANI/NaTaO3 composite photocatalyst for enhanced hydrogen generation under UV light irradiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A PANI/NaTaO3  composite was successfully synthesized by an oxidative polymerization of aniline monomer in hydrochloric acid solution containing sodium tantalate. NaTaO3  at a monoclinic structure was produced via hydrothermal method. The photocatalytic activities of the unmodified NaTaO3  and PANI/NaTaO3  were evaluated for hydrogen generation from an aqueous HCOOH solution and under UV light irradiation. The results showed that the evolution rate of H2  increased significantly when NaTaO3  was modified with PANI. The enhancement of the photocatalytic activity of PANI/NaTaO3  composite was ascribed to the effective charge transfer and separation between NaTaO3  and PANI, which reduced their recombination. This indicates that PANI modification of tantalate photocatalysts may open up a new way to prepare highly efficient catalytic materials for H2  generation.
Rocznik
Strony
115--119
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Nanomaterials Physicochemistry Department
autor
  • Polymer Institute, Faculty of Chemical Technology and Engineering
autor
  • West Pomeranian University of Technology, Szczecin, Nanomaterials Physicochemistry Department
  • West Pomeranian University of Technology, Szczecin, Nanomaterials Physicochemistry Department
Bibliografia
  • 1. Kato, H. & Kudo, A. (1998). New tantalate photocatalysts for water decomposition into H2 and O2. Chem. Phys. Lett. 295, 487–492.
  • 2. Ikeda, S., Fubuki, M., Takahara, Y.K. & Matsumura, M. (2006). Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting. Appl. Catal. A 300, 186–190. DOI: 10.1063/1.4928288.
  • 3. Kato, H. & Kudo, A. (1999). Photocatalytic decomposition of pure water into H2 and O2 over SrTa2O6 prepared by a flux method. Chem. Lett. 28, 1207–1208. DOI: 10.1246/cl.1999.1207.
  • 4. Sayama, K., Arakawa, H. & Domen, K. (1996). Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A=K, Rb). Catal. Today 28, 175–182.
  • 5. Yoshioka, K., Petrykin, V., Kakihana, M., Kato, H. & Kudo, A. (2005). The relationship between photocatalytic activity and crystal structure in strontium tantalates. J. Catal. 232, 102–107. DOI: 10.1016/j.jcat.2005.02.021.
  • 6. Otsuka, H., Kim, K., Kouzu, A., Takimoto, I., Fujimori, H., Sakata, Y., Imamura, H., Matsumoto, T. & Toda, K. (2005). Photocatalytic performance of Ba5Ta4O15 to decomposition of H2O into H2 and O2. Chem. Lett. 34, 822–823. DOI: 10.1246/cl.2005.822.
  • 7. Kurihara, T., Okutomi, H., Miseki, Y., Kato, H. & Kudo, A. (2006). Highly efficient water splitting over K3Ta3B2O12 photocatalyst without loading co-catalyst. Chem. Lett. 35, 274–275. DOI: 10.1246/cl.2006.274.
  • 8. Ishihara, T., Nishiguchi, H., Fukamachi, K. & Takita, Y. (1999). Effects of acceptor doping to KTaO3 on photocatalytic decomposition of pure H2O. J. Phys. Chem. B. 103, 1–3.
  • 9. Kudo, A. & Kato, H. (2000). Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem. Phys. Lett. 331, 373–377. DOI: 10.1016/S0009-2614(00)01220-3.
  • 10. Iwase, A., Kato, H. & Kudo, A. (2009). The effect of alkaline earth metal ion dopants on photocatalytic water splitting by NaTaO3 powder. Chem. Sus. Chem. 2, 873–877. DOI: 10.1002/cssc.200900160.
  • 11. Mukthaa, B., Mahantaa, D., Patila, S. & Madras, G. (2007). Synthesis and photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. J. Solid State Chem. 180, 2986–2989. DOI: 10.1016/j.jssc.2007.07.017.
  • 12. Gangopadhyay, R. & De, A. (2000). Conducting polymer nanocomposites: A brief overview. Chem. Mater. 12, 608–622. DOI: 10.1021/cm990537f.
  • 13. Kandiel, T.A., Dillert, R. & Bahnemann, D.W. (2009). Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt-polypyrrole nanocomposites. Photochem. Photobiol. Sci. 8, 683–690. DOI: 10.1039/b817456c.
  • 14. Zhang, S., Chen, Q., Jing, D., Wang, Y. & Guo, L. (2012). Visible photoactivity and antiphotocorrosion performance of PdS-CdS photocatalysts modified by polyaniline. Int. J. Hydrogen. Energy 37, 791–796. DOI: 10.1016/j.ijhydene.2011.04.060.
  • 15. Zhang, S., Chen, Q., Wang, Y. & Guo, L. (2012). Synthesis and photoactivity of CdS photocatalysts modified by polypyrrole. Int. J. Hydrogen Energy 37, 13030–13036. DOI: 10.1016/j.ijhydene.2012.05.060.
  • 16. Ge, L., Han, C. & Liu, J. (2012). In situ synthesis and enhanced visible light photocatalytic activities of novel PANI–g-C3N4 composite photocatalysts. J. Mater. Chem. 22, 11843–11850. DOI: 10.1039/C2JM16241E.
  • 17. Radocici, M., Saponjic, Z., Jankovic, I.A., Ciric-Marjanovic, G., Ahrenkiel, S.P. & Comor, M.I. (2013). Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Appl. Catal. B 136–137, 133–139. DOI: 0.1016/j.apcatb.2013.01.007.
  • 18. Wei, J., Zhang, Q., Liu, Y., Xiong, R., Pan, C. & Shi, J. (2011). Synthesis and photocatalytic activity of polyaniline–TiO2 composites with bionic nanopapilla structure. J. Nanopart. Res. 13, 3157–3165. DOI: 10.1007/s11051-010-0212-z.
  • 19. Gao, J., Li, S., Yang, W., Ni, G. & Bo, L.J. (2007). Synthesis of PANI/TiO2–Fe3+ nanocomposite and its photocatalytic property. Mater. Sci. 42, 3190–3196. DOI: 0.1007/s10853-006-1353-4.
  • 20. Yavuz, A.G. & Gök, A. (2007). Preparation of TiO2/PANI composites in the presence of surfactants and investigation of electrical properties. Synth. Metals 157, 235–242. DOI: 10.1016/j.synthmet.2007.03.001.
  • 21. Mozia, S., Tomaszewska, M., Kosowska, B., Grzmil, B., Morawski, A.W. & Kałucki, K. (2005). Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation. Appl. Catal. B 55, 195–200. DOI: 10.1016/j.apcatb.2004.09.019.
  • 22. Li, F.F., Liu, D.R., Gao, G.M., Xue, B. & Jiang, Y.S. (2015). Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping. Appl. Catal. B 166–167, 104–111. DOI: 10.1016/j.apcatb.2014.10.049.
  • 23. Yang, J., Wang, X., Wang, X., Jia, R. & Huang, J. (2010). Preparation of highly conductive CNTs/polyaniline composites through plasma pretreating and in-situ polymerization. J. Phys. Chem. Sol. 71, 448–452. DOI: 10.1016/j.jpcs.2009.12.008.
  • 24. Lin, W.H. (2006). NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2. Appl. Phys. Lett. 89, 211904. DOI: 10.1063/1.2396930.
  • 25. Lan, N.T., Phan, L.G., Hoang, L.H., Huan, B.D., Hong, L.V., Anh, T.X. & Chinh, N. (2016). Hydrothermal Synthesis, Structure and Photocatalytic Properties of La/Bi Co-Doped NaTaO3. Mater. Trans. 57(1), 1–4. DOI: 10.2320/matertrans.MA201517.
  • 26. Wang Q., Lian, J., Li, J., Wang, R., Huang, H., Su, B. & Lei, Z. (2015). Highly efficient photocatalytic hydrogen production of flower-like cadmium sulfide decorated by histidine. Sci. Rep. 5, 13593–1396. DOI: 10.1038/srep13593.
  • 27. Ansari, M.O., Khan, M.M., Ansari, S.A., Lee, J. & Cho, M.H. (2014). Enhanced thermoelectric behavior and visible light activity of Ag@TiO2/polyaniline nanocomposite synthesized by biogenic-chemical route. RSC Adv. 4, 23713–23719. DOI: 10.1039/c4ra02602k.
  • 28. Xing, Z., Chen, Z., Zong, X. & Wang, L. (2014). A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production. Chem. Commun. 50, 6762–6764. DOI: 10.1039/c4cc00397g.
  • 29. Kato, H. & Kudo, A. (2001). Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 105, 4285–4292. DOI: 10.1021/jp004386b.
  • 30. Hu, C.C., Tsai, C.C. & Teng, H. (2009). Structure characterization and tuning of perovskite-like NaTaO3 for applications in photoluminescence and photocatalysis. J. Am. Ceram. Soc. 92(2), 460–466. DOI: 10.1111/j.1551-2916.2008.02869.x.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-567f5c9a-a9ab-47c1-9a46-f206384a02ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.