PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative oxygen and carbon isotopic records of Miocene and recent lacustrine unionid bivalves from Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The δ13C and δ18O isotope data from both fossil (Miocene) and modern freshwater bivalve shells of family Unionidae from Poland (species Margaritifera flabellatiformis and Unio tumidus, respectively) show a similar, truncated sinusoidal pattern.. The isotopic profiles of the whole shell are visibly marked by three growth stages, linked with a progressive loss of environmental record because of declining intra-annual biocarbonate accretion rate. The juvenile and gerontic phases exhibit generally more positive and stable (plateau) isotopic pattern than the mid-age stage. An increasing δ13C trend is typical for the final life stage, likely influenced by nutrient overloading, reversing the tendency towards δ13C depletion throughout the individual’s life induced by metabolic processes. Due to the progressive loss of environmental signals through ontogeny, these initial and final isotopic profile segments probably correspond to, respectively, an instant signature of the first season growth, and a multiyear value set of summer maxima during geriatric stage. Vague seasonal cyclic record is the striking feature of the mid-age δ18O and δ13C profile slices. In case of low-amplitude δ18O curve, this is probably promoted by a sensitivity of the lake ecosystem to many dynamic intra-annual factors affecting water budget balance. This consistent signature mode seems to be typical for lake-dwelling unionid shells at least since Miocene from different climatic zones, as confirmed by coeval lacustrine low-latitude mussels from Amazonia. Thus, this isotope record is relevant to obtain information on the habitat and life cycle of the fossil freshwater bivalves, as well as could help understand modern environmental change.
Rocznik
Strony
113–--122
Opis fizyczny
Bibliogr. 64 poz., rys., wykr.
Twórcy
  • Institute of Paleobiology, Polish Academy of Sciences,Twarda 51/55, 00-818 Warszawa, Poland
autor
  • Institute of Paleobiology, Polish Academy of Sciences,Twarda 51/55, 00-818 Warszawa, Poland
  • Faculty of Earth Sciences, University of Silesia, Bedzinska 60, 41-200 Sosnowiec, Poland
autor
  • Association of Polish Climatologists, Krakowskie Przedmiescie 30, 00-927 Warszawa, Poland
  • Institute of Paleobiology, Polish Academy of Sciences,Twarda 51/55, 00-818 Warszawa, Poland
autor
  • PHACOPS Association of Friends of Geosciences, Łódz, Poland
  • Institute of Paleobiology, Polish Academy of Sciences,Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • 1. Beck J.W., Recy J., TayIor F., Edwards L., Cabioch G. (1997) Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Nature, 385: 705-707.
  • 2. Bemis B.E., Geary D.H. (1996) The usefulness of bivalve stable isotope profiles as environmental indicators: data from the eastern Pacific Ocean and the southern Caribbean Sea. Palaios, 11: 328-339.
  • 3. Bemis B.E., Spero H.J., Bijma J., Lea D.W. (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography, 13: 150-160.
  • 4. Ber A., Krzyszkowski D. (2004) Glaciotectonics of the selected regions of Poland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 408: 73-125.
  • 5. Brodzikowski B., Gotowała R., Hałuszczak A., Krzyszkowski D., van Loon A.J. (1987) Soft-sediment deformations from glaciodeltaic, glaciolacustrine and fluviolacustrine sediments in the Kleszczów Graben (central Poland). Geological Society Special Publication, 29: 255-267.
  • 6. Bucci J.P., Showers W.J., Genna B., Levine J.F. (2009) Stable oxygen and carbon isotope profiles in an invasive bivalve (Corbicula fluminea) in North Carolina watersheds. Geochimica et Cosmochimica Acta, 73: 3234-3247.
  • 7. Choiński A. (1991) Katalog jezior Polski. Wydawnictwo Naukowe UAM, Poznań.
  • 8. Ciuk E. (1980) Tektonika rowu Kleszczowa i jej wpływ na warunki powstania złoża węgla brunatnego. Przewodnik LII Zjazdu Polskiego Towarzystwa Geologicznego: 38-56. Wydawnictwa Geologiczne, Warszawa.
  • 9. Dettman D.L., Reische A.K., Lohmann K.C. (1999) Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta, 63: 1049-1057.
  • 10. Dillman R.M., Ford S.E. (1982) Measurement of calcium-carbonate deposition in mollusks by controlled etching of radioactively labeled shells. Marine Biology, 66: 133-143.
  • 11. Diz P., Jorissen F.J., Reichart G.J., Poulain C., Dehairs F., Leorri E., Paulet Y.M. (2009) Interpretation of benthic foraminiferal stable isotopes in subtidal estuarine environments. Biogeosciences, 6: 2549-2560.
  • 12. Dodd J.R., Stanton R.J. (1981) Paleoecology, concepts and applications. J. Wiley and Sons, New York.
  • 13. Dunca E., Schöne B.R., Mutvei H. (2005) Freshwater bivalves tell of past climates: buthow clearly do shells from polluted rivers speak? Palaeogeography, Palaeoclimatology, Palaeoecology, 228: 43-59.
  • 14. Ford H.L., Schellenberg S.A., Becker B.J., Deutschman D.L., Dyck K.A., Koch P.L. (2010) Evaluating the skeletal chemistry of Mytilus californianus as a temperature proxy: effects of microenvironment and ontogeny. Paleoceanography, 25: 1203.
  • 15. Geist J., Auerswald K., Boom A. (2005) Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity. Geochimica et Cosmochimica Acta, 69: 3545-3554.
  • 16. Gillikin D.P., Lorrain A., Li M., Dehairs F. (2007) A large metabolic carbon contribution to the S13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta, 71: 2936-2946.
  • 17. Gillikin D.P., HutchI nson K.A., Kumai Y. (2009) Ontogenic in crease of metabolic carbon in freshwater mussel shells (Pyganodon cataracta). Journal of Geophysical Research, 114: G1:1-6.
  • 18. Goewert A., Carpenter S.J., Downing J. (2007) Oxygen and carbon isotope ratios of Lampsilis cardium (Unionidae) from two streams in ag ricultural watersheds of Iowa, USA. Palaeoget ography, Palaeoclimatology, Palaeoecology, 252: 637-648.
  • 19. Goodwin D.H., Schöne B.R., Dettmann D.L. (2003) Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios, 18: 110-125.
  • 20. Grossman E.L., Ku T.L. (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology, 59: 59-74.
  • 21. Hałuszczak A. (2007) Dike-filled extensional structures in Cenozoic deposits of the Kleszczów Graben (Central Poland). Sedimentary Geology, 93: 81-92.
  • 22. Hordoir R., Meier H.E.M. (2012) Eftect of climate change on the thermal stratification of the Baltic Sea: a sensitivity experiment. Climate Dynamics, 38: 1703-1713.
  • 23. Jones D.S. (1981) Annual growth increments in shells of Spisula solidissima record marine temperature variability. Science, 211: 165-167.
  • 24. Kaandorp R.J.G., Vonhof H.B., del Busto C., Wesselingh F.P., Ganssen G.M., Marmo A.E., Romero Pittman L., van Hinte J.E. (2003) Seasonal stable isotope variations of the modern Amazonian freshwater bivalve Anodontites trapesialis. Palaeogeography, Palaeoclimatology, Palaeoecology, 194: 339-354.
  • 25. Kaandorp R.J.G., Wesselingh F.P., Vonhof H.B. (2006) Ecological implications from geochemical records of Miocene Western Amazonian bivalves. Journal of South American Earth Sciences, 2: 54-74.
  • 26. Khim B.K. (2002) Stable isotope profiles of Serripes groenlandicus shells: I. Seasonal and interannual variations of Alaskan coastal water in the Bering and Chukchi Seas. Geosciences Journal, 6: 257-267.
  • 27. Khim B.K., Kranz D.E., Cooper L.W., Grebmeier J.M. (2003) Seasonal discharge to the western Chukchi Sea shelf identified in stable isotope profiles of mollusk shells. Journal of Geophysical Research, 108: C9: 3300.
  • 28. Klein R.T., Lohmann K.C., Thayer C.W. (1996) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossolus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochimica et Cosmochimica Acta, 60: 4207-4221.
  • 29. Kobashi T., Grossman E.L. (2003) The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontological Research, 7: 343-355.
  • 30. Kołodziejczyk A., Lewandowski K., Stańczykowska A. (2009) Long-term changes of mollusc assemblages in bottom sediments of small semi-isolated lakes of different trophic state. Polish Journal of Ecology, 57: 331-339.
  • 31. Krzyszkowski D. (1993) Pleistocene glaciolacustrine sedimentation in a tectonically active zone, Kleszczów Graben, Central Poland. Sedimentology, 40: 623-644.
  • 32. Labonne M., Hillaire-Marcel C. (2000) Geochemical gradients within modern and fossil shells of Concholepas concholepas from northern Chile: an insight into U-Th systematics and diagenetic/authigenic isotopic imprints in mollusk shells. Geochimica et Cosmochimica Acta, 64: 1523-1534.
  • 33. Leder J.J., Swart P.K. , Szmant A.M. , Dodge R.E . (1996) The origin of variations in the isotopic record of scleractinian corals: I. Oxygen. Geochimica et Cosmochimica Acta, 60: 2857-2870.
  • 34. Lewandowski K. (1990) Unionidae of Szeszupa River and of the lakes along its course in Suwalski Landscape Park. Ekologia Polska, 38: 271-286.
  • 35. Lewandowski K. (1996) Występowanie Dreissena polymorpha (Pall.) oraz małży z rodziny Unionidae w systemie rzeczno-jeziornym Krutyni (Pojezierze Mazurskie). Zeszyty Naukowe Komitetu „Człowiek i Środowisko”, 13: 173-185.
  • 36. Lewandowski K., Stańczykowska A. (1975) The occurrence and role of bivalves of the family Unionidae in Mikołajskie Lake. Ekologia Polska, 23: 317-334.
  • 37. Lorrain A., Paulet Y.M. , Chauvaud L. , Dunbar R. , Mucciarone D., Fontugne M. (2004) S13C variation in scallop shells: increasing metabolic carbon contribution with body size? Geochimica et Cosmochimica Acta, 68: 3509-3519.
  • 38. Lukeneder A., Harzhauser M. , Müllegger S. , Piller W.E. (2010) Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (S18O, S13C). Earth and Planetary Science Letters, 296: 103-114.
  • 39. McConnaughey T.A., Burdett J., Whelan J.F., Paull C.K. (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta, 61: 611-622.
  • 40. McConnaughey T.A., Gillikin D.P. (2008) Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters, 28: 287-299.
  • 41. Mook W.G., Vogel J.C. (1968) Isotopic equilibrium between shells and their environment. Science, 159: 874-875.
  • 42. Morris T.J., Corkum L.D. (1999) Unionid growth patterns in rivers of differing riparian vegetation. Freshwater Biology, 42: 59-68.
  • 43. Müller-Lupp W. (2002) Gefrier und Tauprozesse im sibirischen Permafrost - Untersuchungsmethoden und ökologische Bedeutung. Berichte zur Polar- und Meeresforschung, 415: 145.
  • 44. Müller-Lupp T., Bauch H. (2005) Linkage of Arctic atmospheric circulation and Siberian shelf hydrography: a proxy validation using S18O records of bivalve shells. Global and Planetary Change, 48: 175-186.
  • 45. Negus C.L. (1966) A quantitative study of growth and production of unionid mussels in the river Thames at Reading. Journal of Animal Ecology, 35: 513-532.
  • 46. Patterson W.P. (1998) North American continental seasonality during the last millennium: high-resolution analysis of sagittal otoliths. Palaeogeography, Palaeoclimatology, Palaeoecology, 138: 271-303.
  • 47. Piechocki A., Dyduch-Falniowska A. (1993) Mięczaki (Mollusca), Małże (Bivalvia). Wydawnictwo Naukowe PWN, Warszawa.
  • 48. Ricken W., Steuber T., Freitag H., Hirschfeld M., Niedenzu B. (2003) Recent and historical discharge of a large European river system - oxygen isotopic composition of river water and skeletal aragonite of Unionidae in the Rhine. Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 73-86.
  • 49. Schöll-Barna G. (2011) An isotope mass balance model for the correlation of freshwater bivalve shell (Unio pictorum) carbonate S18O to climatic conditions and water S18O in Lake Balaton (Hungary). Journal of Limnology, 70: 272-282.
  • 50. Schöll-Barna G., Demény A., Serlegi G., Fábián S., Sümegi P., Fórizs I. , Bajnóczi B. (2012) Climatic variability in the Late Copper Age: stable isotope fluctuation of prehistoric Unio pictorum (Unionidae) shells from Lake Balaton (Hungary). Journal of Paleolimnology, 47: 87-100.
  • 51. Schöne B.R., Rodland D.L., Surge D.M., Fiebig J. , Gillikin D.P., Baier S.M. , Goewert A. (2005) Comment on ‘‘Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity?'' by J. Geist et al. (2005). Geochimica et Cosmochimica Acta, 70: 2658-2661.
  • 52. Schwalb A.N., Pusch M.T. (2007) Horizontal and vertical movements of unionid mussels in a lowland river. Journal of the North American Benthological Society, 26: 261-272.
  • 53. Strayer D.L., Downing J.A., Haag W.R., King T.L. , Layzer J.B., Newton T.J., Nichols S.J. (2004) Changing perspectives on pearly mussels, North America's most imperilled animals. Bio- Science, 54: 265-403.
  • 54. Szynkiewicz A. (2000) Age of the brown coal deposits from the Bełchatów lignite mine (Central Poland) (in Polish with English summary). Przegląd Geologiczny, 48 (11): 1038-1044.
  • 55. Tao K., Grossman E.L. (2010) Origin of high productivity in the Pliocene of the Florida Platform: evidence from stable isotopes and trace elements. Palaios, 25: 796-806.
  • 56. Urey H.C., Epstein S., McKinney C.R. (1951) Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. GSA Bulletin, 62: 399-416.
  • 57. Verdegaal S., Troelstra S.R., Beets C.J., Vonhof H.B. (2005) Stable isotopic records in unionid shells as a paleoenvironmental tool. Netherlands Journal of Geosciences, 84: 403-408.
  • 58. Versteegh E.A.A., Troelstra S.R., Vonhof H.B. , Kroon D. (2009) Oxygen isotopic composition of bivalve seasonal growth increments and ambient water in the rivers Rhine and Meuse. Palaios, 24: 497-504.
  • 59. Versteegh E.A.A. , Vonhof H.B. , Troelstra S.R. , Kaandorp R.J.G., Kroon D. (2010) Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry. Geochemistry Geophysics Geosystems, 11 (8): 1-16.
  • 60. Versteegh E.A.A., Vonhof H.B., Troelstra S.R., Kroon D. (2011) Can shells of freshwater mussels (Unionidae) be used to estimate low summer discharge of rivers and associated droughts? International Journal of Earth Sciences, 100 (6): 1423-1432.
  • 61. Wefer G., Berger W.H. (1991) Isotope paleontology: growth and composition of extant calcareous species. Marine Geology, 100: 207-248.
  • 62. Wurster C.M., Patterson W.P. (2001) Seasonal variation in stable oxygen and carbon isotope values recovered from modern lacustrine freshwater molluscs: paleoclimatological implications for sub-weekly temperature records. Journal of Paleolimnology, 26: 205-21 8.
  • 63. Xia J., Engstrom D.R., Ito E. (1997) Geochemistry of ostracod calcite: Part 2. The effects ofwaterchemistry and seasonal temperature variation on Candona rawsoni. Geochimica et Cosmochimica Acta, 61: 383-391.
  • 64. Yan H., Li Z.X., Lee X.Q., Zhou H., Cheng H.G., Chen J . (2012) Metabolic effects on stable carbon isotopic composition of freshwater bivalve shell Corbicula fluminea. Chinese Journal of Geochemistry, 31: 103-108.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-567d5725-ba5a-422a-82f3-088d7241c1e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.