PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deep Learning-Powered Beamforming for 5G Massive MIMO Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a ResNeSt-based deep learning approach to beamforming for 5G massive multiple-input multipleoutput (MIMO) systems is presented. The ResNeSt-based deep learning method is harnessed to simplify and optimize the beamforming process, consequently improving performance and efficiency of 5G and beyond communication networks. A study of beamforming capabilities has revealed potential to maximize channel capacity while minimizing interference, thus eliminating inherent limitations of the traditional methods. The proposed model shows superior adaptability to dynamic channel conditions and outperforms traditional techniques across various interference scenarios.
Słowa kluczowe
Rocznik
Tom
Strony
38--45
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Electronic Systems, Telecommunications and Renewable Energies, Department of Technology University Center Nour Bachir, El Bayadh, Algeria
  • Laboratory of Electronic Systems, Telecommunications and Renewable Energies, Department of Technology University Center Nour Bachir, El Bayadh, Algeria
  • Laboratory of Electronic Systems, Telecommunications and Renewable Energies, Department of Technology University Center Nour Bachir, El Bayadh, Algeria
  • TIT Laboratory, Department of Electrical Engineering Tahri Mohammed University, Bechar, Algeria
Bibliografia
  • [1] S. Belhadj, A.M. Lakhdar, and R.I. Bendjillali, “Performance Comparison of Channel Coding Schemes for 5G Massive Machine Type Communications”, The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 22, no. 2, pp. 902– 908, 2021 (https://doi.org/10.11591/ijeecs.v22.i2.pp902-908).
  • [2] E. Ali, M. Ismail, R. Nordin, and N.F. Abdulah, “Beamforming Techniques for Massive MIMO Systems in 5G: Overview, Classification, and Trends for Future Research”, Frontiers of Information Technology & Electronic Engineering, vol. 18, no. 6, pp. 753– 772, 2017 (https://doi.org/10.1631/FITEE.1601817).
  • [3] R.I. Bendjillali, M. Beladgham, K. Merit, and A.T. Ahmed, “Illumination-Robust Face Recognition Based on Deep Convolutional Neural Networks Architectures”, The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 18, no. 2, pp. 1015– 1027, 2020 (https://doi.org/ 10.11591/ijeecs.v18.i2.pp1015-1027).
  • [4] R.I. Bendjillali, M. Beladgham, K. Merit, and M. Kamline, “Enhanced Face Recognition System Based on Deep CNN”, 2019 6 th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria, 2019 (https://doi.org/10.1109/ISPA48434.2019.8966797).
  • [5] R.I. Bendjillali, M. Beladgham, K. Merit, and A.T. Ahmed, “Improved Facial Expression Recognition Based on DWT Feature for Deep CNN”, Electronics, vol. 8, no. 3, art. no. 324, 2019 (https://doi.org/10.3390/electronics8030324).
  • [6] R.I. Bendjillali et al., “A Robust-Facial Expressions Recognition System using Deep Learning Architectures”, IEEE 2023 International Conference on Decision Aid Sciences and Applications (DASA’ 23), Annaba, Algeria, 2023 (https://www.researchgate.net/publication/374164533_A_RobustFacial_Expressions_Recognition_System_using_Deep_Learning_Architectures).
  • [7] R.I. Bendjillali, M. Beladgham, K. Merit, A.T. Ahmed, and A. Ihsen, “Facial Expression Recognition Based on DWT Feature for Deep CNN”, 6th International Conference on Control, Decision and Information Technologies (CODIT’19), Paris, France, 2019(https://doi.org/10.1109/CoDIT.2019.8820410).
  • [8] M. Kamline, A.M. Moulay Lakhdar, R.I. Bendjillali, “Arabic Handwriting Recognition System Based on Genetic Algorithm and Deep CNN Architectures”, International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 2021 (https: //doi.org/10.1109/DASA53625.2021.9682380).
  • [9] A. Klautau, P. Batista, N. González-Prelcic, Y. Wang, and R. W. Heath, “5G MIMO Data for Machine Learning: Application to Beam-selection Using Deep Learning”, 2018 Information Theory and Applications Workshop (ITA), San Diego, USA, 2018 (https: //doi.org/10.1109/ITA.2018.8503086).
  • [10] W. Xu, F. Gao, S. Jin, and A. Alkhateeb, “3D Scene-based Beam Selection for mmWave Communications”, IEEE Wireless Communications Letters, vol. 9, no. 11, pp. 1850 –1854, 2020 (https: //doi.org/10.1109/LWC.2020.3005983).
  • [11] A. Klautau, N. González-Prelcic, and R.W. Heath, “LIDAR Data for Deep Learning-based mmWave Beam-selection”, IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 909–912 , 2019 (https: //doi.org/10.1109/LWC.2019.2899571).
  • [12] S. Ayvasik, H.M. Gürsu, and W. Kellerer, “Veni Vidi Dixi: Reliable Wireless Communication with Depth Images”, in: Proc. of the 15th International Conference on Emerging Networking Experiments and Technologies, pp. 172 –185, 2019 (https://doi.org/ 10.48550/arXiv.1912.01879).
  • [13] Y. Tian, G. Pan, and M.-S. Alouini, “Applying Deep-learning-based Computer Vision to Wireless Communications: Methodologies, Opportunities, and Challenges”, 2020. [Online]. Available: arX-iv: 2006 .05782 (https://doi.org/ 10. 36227/techrxiv.12458267.v2).
  • [14] M. Alrabeiah and A. Alkhateeb, “Deep Learning for mmWave Beam and Blockage Prediction Using sub-6 GHz Channels”, IEEE Transactions on Communications, vol. 68 , no. 9, pp. 5504–5518 , 2020 (https://doi.org/10.1109/TCOMM.2020.3003670).
  • [15] M. Alrabeiah, A. Hredzak, and A. Alkhateeb, “Millimeter Wave Base Stations with Cameras: Vision-aided Beam and Blockage Prediction”, in: 2020 IEEE 91st Vehicular Technology Conference (VTC 2020 -Spring), Antwerp, Belgium, 2020 (https://doi.org/ 10.1109/VTC2020-Spring48590.2020.9129369).
  • [16] F.B. Mismar, A. Ammouri, A. Alkhateeb, J.G. Andrews, and B.L. Evans, “Deep Learning Predictive Band Switching in Wireless Networks”, IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 96– 109, 2021 (https://doi.org/ 10.1109/TWC.2020.3023397).
  • [17] I. Ahmed et al., “A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives”, IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3060– 3097, 2018 (https: //doi.org/10.1109/COMST.2018.2843719).
  • [18] K. Aljohani, I. Elshafiey, and A. Al-Sanie, “Implementation of Deep Learning in Beamforming for 5G MIMO Systems”, 2022 39 th National Radio Science Conference (NRSC), Cairo, Egypt, pp. 188–195, 2022 (https://doi.org/ 10.1109/NRSC57219.2022.9971327).
  • [19] H. Zhang et al., “ResNeSt: Split-Attention Networks”, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, USA, pp. 2735 –2745, 2022 (https://doi.org/10.1109/CVPRW56347.2022.00309).
  • [20] X. Li, W. Wang, X. Hu, and J. Yang, “Selective Kernel Networks”, in: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519, 2019 (https://doi.org/ 10.1 109/CVPR.2019.00060).
  • [21] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and Excitation Networks”, 2017 (https://doi.org/ 10.48550/arXi v.1709.01507).
  • [22] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated Residual Transformations for Deep Neural Networks”, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017 (https://doi.org/10.1109/CVPR.2017.634).
  • [23] S. Jain, A. Markan and C.M. Markan, “Performance Evaluation of a Millimeter Wave MIMO Hybrid Beamforming System”, 2020 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 2020 (https://doi.org/ 10.110 9/LATINCOM50620.2020.9282332).
  • [24] G. S. Sahoo and A. Ghosh, “Performance Analysis for Hybrid Beamforming Algorithm in 5 G MIMO Wireless Communication System”, 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 2022 (https://doi.org/ 10.1109/MAPCON56011.2022.10047166).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-567ca3d0-d9f7-44bc-93f3-460b24ee02bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.