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The Case of Hidden Instantaneous Powers
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Summary: This brief communication addresses the case of a dc nonlinear load supplied with  
a perfectly constant instantaneous power. A careful analysis shows that this condition does not 
provide optimum transfer of electric energy .

1. INTRODUCTION
The goal of this paper is to observe the structure of the 

instantaneous power measured at the terminals of a dc 
nonlinear load supplied with a distorted voltage:
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and current:
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The peculiarity of this case consists in the fact that the 
instantaneous power:

p = vi = P                              (3)

is not time-variable, but perfectly constant. In this case some 
observers may wrongly interpret such a condition as ideal 
and a superficial macroscopic examination of this case may 
lead to the conclusion that no power oscillations between 
load and the voltage source take place and no power factor 
compensation is required. 

2. EXAMPLE
A numerical example, where P = 1000 W, will help 

explain the true nature of this case. The studied system is 
approximated by the first five harmonic voltages and current 
phasors (Table I), with the voltage spectrum determined 
from the expression v = 1000/i. The voltage, current and 
instantaneous power waveforms are shown in Figure 1. The 
first step is the computation of the rms voltage and current:  
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that yield the apparent power:

 	 S = VI = 1365.90    VA > P                   (5)

and the power factor:

 PF = P/S = 0.73                           (6)

A PF<1 indicates the presence of instantaneous nonactive 
powers. These are powers that oscillate between the load and 
the voltage source and their mean value is nil. Nevertheless, 
these powers cause additional power loss in the supplying 
line.

The detailed picture of the instantaneous powers is 
obtained from the product of the instantaneous voltage and 
current:
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where V0I0 = P0 is the dc power,
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Table 1. Voltage and current phasors, and harmonic active powers 
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(A)     Ph (W)

0 120 9.763 1171.56

1 60 / 60° 4.413 / –120° –132.39

2 25 / 40° 0.506 / –33.350° 1.81

3 30 / 0° 2.281 / –174.43°
 

–34.05

4 12 / – 100° 1.443 / 9.46° –2.88

5 10 / –90° 0.869 / 108.81° –4.11

Total  P =  999.94
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with the harmonic active power of order h:
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followed by:

  
(10)

the instantaneous intrinsic power [1], another oscillating 
nonactive component, always present when active power   is 
present, and having the distinctive property that is not causing 
line power losses [2]. 

The last term in (8) is the instantaneous reactive harmonic 
power of order h:

(11)

with the amplitude:

 (12)

and the sum.
The last term in (7) is a cross-product of voltages and 

currents:
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Here we observe three instantaneous nonactive powers: 
Current Distortion Power: 
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and Harmonic Distortion Power:
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Voltage Distortion Power:	

 

  

(16)

It is possible to express the apparent power squared as 
follows:

(17)

 

If the skin-effect is ignored, the power loss in the line with 
a total resistance RS is:

(18)

Comparing (17) with (18) results that all the instantaneous 
powers, with the exception of the intrinsic powers, contribute 
to the conversion of electric in thermal energy, i.e. power 
losses.

To minimize the line losses the load current must be 
compensated to yield unity power factor. Defining an active 
current that has a waveform that is a perfect replica of the 
voltage wave, ia = Gv and choosing G = P/V2 = 0.0585 S,  results 
that the difference current, iN = i – ia it is a pure nonactive 
current that must be compensated by means of an active 
filter. In this case the rms line current will be reduced from 
10.45 A to 7.65 A. In Figure 2 are presented the voltage, 
current and total instantaneous power for the compensated 
system at unity power factor. Now it becomes evident that 
the uncompensated system, in spite of a perfectly constant 
instantaneous power, is not providing the best conditions for 
supplying line utilization.

3. CONCLUSION

The first impression of tranquility, of no power oscillations, 
is misleading. Hidden under the “veneer” of a perfect energy 
flow are energy oscillations that reduce the utilization of the 
supplying lines and contribute to additional power loss. This 
study dealt with one particular unusual condition that helped 
reveal the existence of energy oscillations.
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Fig. 1.  Oscillograms: voltage v, current i and total instantaneous power  p. 
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Fig. 2. Unity power factor:  Oscillograms of voltage v, current i and total 
instantaneous power p.
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