PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nickel recovery from low-grade laterites: study of thermal pre-treatments to improve the efficiency of the hydrometallurgical process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The processing of lower-grade laterites to obtain nickel has increased due to the gradual depletion of higher-grade sulphide ore reserves. However, the extraction from laterites has been limited because conventional technologies imply a considerable expense of energy or reagents. In this document, the effect of thermal pre-treatments on a laterite sample is demonstrated to improve nickel leaching under moderate conditions. The influence of agents such as coke, coal and NaCl in the heat treatment was also studied. With the results it is presumed that part of the nickel occluded in the goethite migrates to the iron oxides surface during the heat treatment; this is why the dissolution of nickel is linked to that of iron. The highest extractions (64.7% nickel) were achieved by combining heat treatment and leaching with 1 M H2SO4 at ambient conditions. Compared to direct leaching of unpretreated laterite, leaching rates for this metal are increased by 26.5%. The chlorinating calcination and the optimization of the studied variables will be favourable to reach higher metallic extractions.
Rocznik
Strony
219--226
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Universidad Pedagôgica y Tecnologica de Colombia, Facultad de Ingenieria, Escuela de Ingenieria Metalurgica, Colombia
  • Universidad Pedagôgica y Tecnologica de Colombia, Facultad de Ingenieria, Escuela de Ingenieria Metalurgica, Colombia
Bibliografia
  • [1] Worldbank Search. New World Bank fund to support climate-smart mining for energy transition. World Bank; 2019. https://www.worldbank.org/en/news/press-release/2019/05/01/new-world-bank-fund-to-support-climate- smart-mining-for-energy-transition.
  • [2] Brown T, Idoine N, Wrighton C, Raycraft R, Hobbs S, Shaw R, et al. World mineral production 2014-2018. Keyworth: British Geological Survey; 2020. Retrieved from, https://www.bgs.ac.uk/minerals UK/statistics/worldStatistics.html. [Accessed 6 April 2021].
  • [3] MacCarthy J, Nosrati A, Skinner W, Addai-Mensah J. Acid leaching and rheological behaviour of a siliceous goethitic nickel laterite ore: influence of particle size and temperature. Miner Eng 2015;77:52-63. https://doi.org/10.1016/j.mineng. 2014.12.031.
  • [4] Rice NM. A hydrochloric acid process for nickeliferous laterites. Miner Eng 2016;88:28-52. https://doi.org/10.1016/j.mineng.2015.09.017.
  • [5] Petrakis E, Karmali V, Komnitsas K. Factors affecting nickel upgrade during selective grinding of low-grade limonitic laterites. Miner Process Extr Metall (IMM Trans Sect C) 2018; 130(3):192-201. https://doi.org/10.1080/25726641.2018.1521578.
  • [6] Komnitsas K, Petrakis E, Bartzas G. A novel and greener sequential column leaching approach for the treatment of two different Greek laterites. Sci Total Environ 2023;854: 158748. https://doi.org/10.1016/j.scitotenv.2022.158748.
  • [7] Mystrioti C, Papassiopi N, Xenidis A, Komnitsas K. Countercurrent leaching of low-grade laterites with hydrochloric acid and proposed purification options of pregnant solution. Minerals 2018;8(12):599. https://doi.org/10.3390/min8120599.
  • [8] Javanshir S, Heidari Zahra, Azargoon A. Atmospheric pressure leaching of nickel from a low-grade nickel-bearing ore. Physicochem Problem Mineral Process 2018;54(3):890-900. https://doi.org/10.5277/ppmp1891.
  • [9] Büyükakinci E, Topkaya Y. Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching. Hydrometallurgy 2009;97(1-2):33-8. https://doi.org/10.1016/j.hydromet.2008.12.014.
  • [10] Luo J, Li G, Rao M, Peng Z, Zhang Y, Jiang T. Atmospheric leaching characteristics of nickel and iron in limonitic laterite with sulfuric acid in the presence of sodium sulfite. Miner Eng 2015;78:38-44. https://doi.org/10.1016/j.mineng.2015.03.030.
  • [11] Komnitsas K, Petrakis E, Bartzas G, Karmali V. Column leaching of low-grade saprolitic laterites and valorization of leaching residues. Sci Total Environ 2019;665:347-57. https://doi.org/10.1016/j.scitotenv.2019.01.381.
  • [12] Search Worldbank. Mineral production to soar as demand for clean energy increases. World Bank; 2020. https://www.worldbank.org/en/news/press-release/2020/05/11/mineral-production-to-soar-as-demand-for-clean-energy-increases.
  • [13] Zhang X, Xiang S, Du Q, Bi F, Xie K, Wang L. Effect of calcination temperature on the structure and performance of rod-like MnCeOx derived from MOFs catalysts. Mol Catal 2022;522:112226. https://doi.org/10.1016/j.mcat.2022.112226.
  • [14] Yang J, Zhang G, Ostrovski O, Jahanshahi S. Changes in an Australian laterite ore in the process of heat treatment. Miner Eng 2013;54:110-5. https://doi.org/10.1016/j.mineng.2013.05.009.
  • [15] Guo Q, Qua J, Qi T, Wei G, Han B. Activation pretreatment of limonitic laterite ores by alkali-roasting method. Miner Eng 2011;24:825-32. https://doi.org/10.1007/s12613-012-0522-5.
  • [16] Garces-Granda A, Lapidus GT, Restrepo-Baena OJ. Effect of a thermal pretreatment on dissolution kinetics of a limonitic laterite ore in chloride media. Hydrometallurgy 2020;196: 105428. https://doi.org/10.1016/j.hydromet.2020.10542.
  • [17] Brand NW, Butt CRM, Elias M. Nickel laterites: classification and features. AGSO J Aust Geol Geophys 1997;17(4):81-8.
  • [18] Oxley A, Smith ME, Caceres O. Why heap leach nickel laterites? Miner Eng 2016;88:53-60. https://doi.org/10.1016/ j.mineng.2015.09.018.
  • [19] Garces-Granda A, Lapidus GT, Restrepo-Baena OJ. The effect of calcination as pre treatment to enhance the nickel extraction from low-grade laterites. Miner Eng 2018;120: 127-31. https://doi:10.1016/j.mineng.2018.02.019.
  • [20] Quast K, Addai-Mensah J, Skinner W. Preconcentration strategies in the processing of nickel laterite ores Part 5: effect of mineralogy. Miner Eng 2017;110:31-9. https://doi.org/10.1016/j.mineng.2017.03.012.
  • [21] Li J, Bunney K, Watling H, Robinson D. Thermal pre-treat- ment of refractory limonite ores to enhance the extraction of nickel and cobalt under heap leaching conditions. Miner Eng 2013;41:71-8. https://doi.org/10.1016/j.mineng.2012.11.002.
  • [23] Rees K, van Deventer J. Preg-robbing phenomena in the cyanidation of sulphide gold ores. Hydrometallurgy 2000; 58(1):61-80. https://doi.org/10.1016/s0304-386x(00)00131-6.
  • [22] Awasthi M. In: UK, editor. Chemistry of gold extraction. Scitus Academics LLC; 2015.
  • [24] Yang XJ, Xu XM, Xu J, Han YF. Iron oxychloride (FeOCl): an efficient fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J Am Chem Soc 2013;135(43):16058-61. https://doi.org/10.1021/ja409130c.
  • [25] O'Connor F, Cheung W, Valix M. Reduction roasting of limonite ores: effect of dehydroxylation. Int J Miner Process 2006;80(2-4):88-99. https://doi.org/10.1016/j.minpro.2004.05.003.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56703597-ffd2-4d93-9514-7e5c86af1a70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.