PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie pomp ciepła w ciepłownictwie

Autorzy
Identyfikatory
Warianty tytułu
EN
Application of Heat Pumps in District Heating
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono przegląd systemów pomp ciepła w nowoczesnym ciepłownictwie wraz z ich oceną w krajowym zastosowaniu. Zaprezentowano nowoczesne metody wprowadzania pomp ciepła do systemów ciepłowniczych, wśród których można wyróżnić: systemy słoneczne, pompy ciepła zasilane energią elektryczną pochodzącą z hybrydowych kolektorów słonecznych PV/T, pompy ciepła wykorzystujące ciepło odpadowe, a także powietrzne pompy ciepła wspomagające podgrzewanie ciepłej wody w sezonie letnim.
EN
The article presents an overview of heat pump systems in modern heating, along with their assessment in domestic use. The article also presents modern methods of introducing heat pumps into heating systems, including: solar systems, photovoltaic heat pumps, heat pumps using waste heat, and air heat pumps supporting hot water heating in the summer season.
Rocznik
Strony
15--19
Opis fizyczny
Bibliogr. 59 poz., rys.
Twórcy
  • Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego Wydział Inżynierii Środowiska Politechnika Lubelska
Bibliografia
  • [1] Sayegh M. A., Jadwiszczak P., Axcell B. P., Niemierka E., Bryś K., Jouhara H. 2018. Heat pump placement, connection and operational modes in European district heating. Energy and Buildings. vol. 166: 122-144. doi.org/10.1016/j.enbuild.2018.02.006
  • [2] Rubik M. 2023. Technologia pomp ciepła w transformacji energetycznej ciepłownictwa wyzwania, zagrożenia i oczekiwania. Ciepłownictwo Ogrzewnictwo Wentylacja. 54 (3-6). DOI:10.15199/9.2023.3.4, DOI:10.15199/9.2023.4.1, DOI:10.15199/9.2023.4.1, DOI:10.15199/ 9.2023.4.1
  • [3] Rubik M. 2021. Quo vadis - polskie ciepłownictwo/ogrzewnictwo? Ciepłownictwo Ogrzewnictwo Wentylacja. 52 (9-10). DOI:10.15199/9.2021.9.1, DOI:10.15199/9.2021.10.1
  • [4] Yolcan O. O. 2023. World energy outlook and state of renewable energy: 10-Year evaluation. Innovation and Green Development. vol. 2. issue 4. doi.org/10.1016/j.igd.2023.100070
  • [5] Rey-Hernández J. M., Rey-Martínez F. J., Yousif Ch., Krawczyk D. 2023. Assessing the performance of a renewable District Heating System to achieve nearly zero-energy status in renovated university campuses: A case study for Spain. Energy Conversion and Management. vol. 292. doi.org/10.1016/j.enconman.2023.117439
  • [6] Siuta-Olcha A., Cholewa T., Gomółka M., Kołodziej P., Østergaard D. S., Svendsen S. 2022. On the influence of heat cost allocation on operation of heating system in buildings and possible, additional decrease of supply temperature. Energy and Buildings. vol. 254. doi.org/10.1016/j.enbuild.2021.111599
  • [7] Qin Q., Gosselin L. 2023. Multiobjective optimization and analysis of low-temperature district heating systems coupled with distributed heat pumps. Applied Thermal Engineering. vol. 230. doi.org/10.1016/j.applthermaleng.2023.120818
  • [8] Sayegh M. A., Jadwiszczak P., Axcell B. P., Niemierka E., Bry’s K., Jouhara, H. 2018. Heat pump placement, connection and operational modes in European district heating. Energy and Buildings. vol. 166: 122-144. doi.org/10.1016/j.enbuild.2018.02.006
  • [9] Stokowiec K., Wciślik S., Kotrys-Działak D. 2023. Innovative Modernization of Building Heating Systems: The Economy and Ecology of a Hybrid District-Heating Substation. Inventions. 8 (1). doi. org/10.3390/inventions8010043
  • [10] Kuznik F., Frayssinet L., Roux J. J., Merlier L. 2022. Calculation of heating and cooling energy loads at the district scale: Development of MoDEM, a modular and technologically explicit platform. Sustainable Cities and Society. vol. 83. doi.org/10.1016/j.scs.2022.103901
  • [11] Mirek J., Słomczyńska K., Mirek P. 2022. Model efektywnego systemu ciepłowniczego na bazie energii solarnej. Instal. (11): 19-27. DOI 10.36119/15.2022.11.1
  • [12] Sekret R. 2021. Problematyka obniżania temperatury nośnika ciepła w sieci ciepłowniczej. Instal. (2): 13-17. DOI 10.36119/15.2021.2.2
  • [13] Świątecki M., Zielasko J. 2019. Optymalizacja parametrów pracy sieci ciepłowniczej. Instal. (11): 19-22
  • [14] Sekret R. 2022. Ewolucja sieci ciepłowniczych. Ciepłownictwo Ogrzewnictwo Wentylacja. 53 (3). DOI: 10.15199/9.2022.3.1
  • [15] Chicherin S., Zhuikov A., Junussova L. 2022. Integrating a heat pump into a 4th generation district heating (4GDH) system - Two-mode configuration inputting operational data. Energy & Buildings. vol. 275. doi.org/10.1016/j.enbuild.2022.112445
  • [16] Calise F., Cappiello F. L., Cimmino L., Dentice D’accadia M., Vicidomini M. 2022. Optimal design of a 5th generation district heating and cooling network based on seawater heat pumps. Energy Conversion and Management. vol. 267. doi.org/10.1016/j.enconman.2022.115912
  • [17] Gong Y., Ma G., Jiang Y., Wang L. 2023. Research progress on the fifth-generation district heating system based on heat pump technology. Journal of Building Engineering. vol. 71. doi.org/10.1016/j. jobe.2023.106533
  • [18] Eslami S., Noorollahi Y., Marzband M., Anvari-Moghaddam A. 2023. Integrating heat pumps into district heating systems: A multi-criteria decision analysis framework incorporating heat density and renewable energy mapping. Sustainable Cities and Society. vol. 98. doi. org/10.1016/j.scs.2023.104785
  • [19] Razumkova K., Smyk A., Laskowski R. 2019. Analiza przyczyn niezadowalającego schładzania wody sieciowej powrotnej w węzłach cieplnych. Instal. (11): 4-10. DOI: 10.36119/15.2019.11.1
  • [20] Bocian M., Siuta-Olcha A., Cholewa T. 2022. On the circulation heat losses in domestic hot water systems in residential buildings. Energy for Sustainable Development. vol. 71: 406-418. doi.org/10.1016/j.esd.2022.10.014
  • [21] Bocian M. 2022. Rzeczywiste straty ciepła w instalacji ciepłej wody w wybranych placówkach medycznych. Instal. (11): 28-33. DOI:10.36119/15.2022.11.2
  • [22] Lygnerud K., Ottosson J., Kensby J., Johansson L. 2021. Business models combining heat pumps and district heating in buildings generate cost and emission savings. Energy. vol. 234. doi.org/10.1016/j.energy.2021.121202
  • [23] Yuan M., Thellufsen J. Z., Sorknæs P., Lund H., Liang Y. 2021. District heating in 100% renewable energy systems: Combining industrial excess heat and heat pumps. Energy Conversion and Management. vol. 244. doi.org/10.1016/j.enconman.2021.114527
  • [24] Požgaj D., Pavković B., Delač B., Glažar V. 2023. Retrofitting of the District Heating System Based on the Application of Heat Pumps Operating with Natural Refrigerants. Energies. 16(4). doi.org/10.3390/en16041928
  • [25] Xiao S., Nefodov D., Richter M., Wördemann M., Urbaneck T. 2023. Large heat pumps with hot water store in local heating systems – Investigation of operation strategies. Journal of Energy Storage. vol. 63. doi.org/10.1016/j.est.2023.106924
  • [26] Mateu-Royo C., Sawalha S., Mota-Babiloni A., Navarro-Esbrí J. 2020. High temperature heat pump integration into district heating network. Energy Conversion and Management. vol. 210. doi.org/10.1016/j.enconman.2020.112719
  • [27] Zhu T., Ommen T., Meesenburg W., Thorsen J. E., Elmegaard B. 2021. Steady state behavior of a booster heat pump for hot water supply in ultra-low temperature district heating network. Energy. vol. 237. doi. org/10.1016/j.energy.2021.121528
  • [28] Sarbu I., Mirza M., Muntean D. 2022. Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review. Energies. 15(18). doi.org/10.3390/en15186523
  • [29] Pesola A. 2023. Cost-optimization model to design and operate hybrid heating systems - Case study of district heating system with decentralized heat pumps in Finland. Energy. vol. 281. doi.org/10.1016/j.energy.2023.128241
  • [30] Gadomska A., Kowalczyk A. 2022. Zmiany wartości sezonowego współczynnika efektywności SCOP powietrznej pompy ciepła w zależności od założeń projektowych. Ciepłownictwo Ogrzewnictwo Wentylacja. 53 (11): 3-10. DOI: 10.15199/9.2022.11.1
  • [31] Wei W., Wang B., Gu H., Ni L., Yao Y. 2021. Investigation on the regulating methods of air source heat pump system used for district heating: Considering the energy loss caused by frosting and on–off. Energy and Buildings. vol. 235. doi.org/10.1016/j.enbuild.2021.110731
  • [32] Puttige A. R., Andersson S., Östin R., Olofsson T. 2022. Modeling and optimization of hybrid ground source heat pump with district heating and cooling. Energy and Buildings. vol. 264. doi.org/10.1016/ j.enbuild.2022.112065
  • [33] Arghand T., Javed S., Dalenbäck J.-O. 2023. Combining direct ground cooling with ground-source heat pumps and district heating: Energy and economic analysis. Energy. vol. 270. doi.org/10.1016/j.energy. 2023.126944
  • [34] Arghand T., Javed S., Dalenbäck J.-O. 2022. Combining direct ground cooling with ground-source heat pumps and district heating: Borehole sizing and land area requirements. Geothermics. vol. 106. doi.org/10.1016/j.geothermics.2022.102565
  • [35] Zhang X. 2021. Numerical study of geothermal district heating from a ground heat exchanger coupled with a heat pump system. Applied Thermal Engineering. vol. 185. doi.org/10.1016/j.applthermaleng. 2020.116335
  • [36] Wei S., Long N., Yang Y. 2019. Experimental research on the characteristics of single-well groundwater heat pump systems. Energy and Buildings. vol. 191. doi.org/10.1016/j.enbuild.2019.02.039
  • [37] Cui Y., Zhu J., Twaha S., Chu J., Bai H., Huang K., Chen X., Zoras S., Soleimani Z. 2019. Techno-economic assessment of the horizontal geothermal heat pump systems: A comprehensive review. Energy Conversion and Management. vol. 191. doi.org/10.1016/j.enconman. 2019.04.018
  • [38] Biglia A., Ferrara M., Fabrizio E. 2021. On the real performance of groundwater heat pumps: Experimental evidence from a residential district. Applied Thermal Engineering. vol. 192. doi.org/10.1016/j.applthermaleng.2021.116887
  • [39] Abokersh M. H., Vallès M., Saikia K., Cabeza F., Boer D. 2021. Techno-economic analysis of control strategies for heat pumps integrated into solar district heating systems. Journal of Energy Storage. vol. 42. doi.org/10.1016/j.est.2021.103011
  • [40] Zhang R., Wang D., Yu Z., Sun Y., Wan H., Liu Y., Jiao Q., Gao M., Fan J., Lan B. 2023. Dual-objective optimization of large-scale solar heating systems integrated with water-to-water heat pumps for improved techno-economic performance. Energy and Buildings. vol. 296. doi.org/10.1016/j.enbuild.2023.113281
  • [41] Fan X., Pu J., Wu Z., Wang Y., You S., Zhang H., Liu J., Jiang Y., Liu S., Wan Z. 2023. Thermodynamic performance and heat and mass transfer analysis of air source absorption heat pump for heating. Journal of Building Engineering. vol. 76. doi.org/10.1016/j.jobe.2023.107390
  • [42] Wu Z., You S., Zhang Z., Wang Y., Jiang Y., Liu Z., Sha L., Wei S. 2021. Experimental investigations and multi-objective optimization of an air-source absorption heat pump for residential district heating. Energy Conversion and Management. vol. 240. doi.org/10.1016/j.enconman.2021.114267
  • [43] Mi P., Zhang J., Han Y., Guo X. 2021. Study on energy efficiency and economic performance of district heating system of energy saving reconstruction with photovoltaic thermal heat pump. Energy Conversion and Management. vol. 247. doi.org/10.1016/j.enconman.2021.114677
  • [44] Qin Q., Gosselin L. 2023. Multiobjective optimization and analysis of low-temperature district heating systems coupled with distributed heat pumps. Applied Thermal Engineering. vol. 230. doi.org/10.1016/ j.applthermaleng.2023.120818
  • [45] Jiang Y., Ma G., Gong Y., Wang L. 2023. Simulation research of a dualloop booster heat pump system on district heating under ultra-low temperature. Applied Thermal Engineering. vol. 228. doi.org/10.1016/j. applthermaleng.2023.120475
  • [46] Bordignon S., Quaggiotto D., Vivian J., Emmi G., De Carli M., Zarrella A. 2022. A solar-assisted low-temperature district heating and cooling network coupled with a ground-source heat pump. Energy Conversion and Management. vol. 267. doi.org/10.1016/j.enconman.2022.115838
  • [47] Chicherin S. 2023. Amount of heat available from a prosumer of a 5th generation district heating and cooling (5GDHC) system: Case study of a data center. Journal of Building Engineering. vol. 76. doi. org/10.1016/j.jobe.2023.107138
  • [48] Balode L., Zlaugotne B., Gravelsins A., Svedovs O., Pakere I., Kirsanovs V., Blumberga D. 2023. Carbon Neutrality in Municipalities: Balancing Individual and District Heating Renewable Energy Solutions. Sustainability. 15(10). doi.org/10.3390/su15108415
  • [49] Dino G. E., Catrini P., Palomba V., Frazzica A., Piacentino A. 2023. Promoting the Flexibility of Thermal Prosumers Equipped with Heat Pumps to Support Power Grid Management. Sustainability. 15(9). doi. org/10.3390/su15097494
  • [50] Tosatto A., Dahash A., Ochs F. 2023. Simulation-based performance evaluation of large-scale thermal energy storage coupled with heat pump in district heating systems. Journal of Energy Storage. vol. 61. doi.org/10.1016/j.est.2023.106721
  • [51] Arslan O., Ergenekon Arslan A., Kurtbas I. 2023. Exergoeconomic and exergoenvironmental based multi-criteria optimization of a new geothermal district heating system integrated with thermal energy storage driven heat pump. Journal of Building Engineering. vol. 73. doi. org/10.1016/j.jobe.2023.106733
  • [52] Østergaard P. A., Andersen A. N. 2023. Optimal heat storage in district energy plants with heat pumps and electrolysers. Energy. vol. 275. doi. org/10.1016/j.energy.2023.127423
  • [53] Stock J., Arjuna F., Xhonneux A., Müller D. 2023. Modelling of waste heat integration into an existing district heating network operating at different supply temperatures. Smart Energy. vol. 10. doi. org/10.1016/j.segy.2023.100104
  • [54] Li J., Yang Z., Li H., Hu S., Duan Y., Yan J. 2021. Optimal schemes and benefits of recovering waste heat from data center for district heating by CO2 transcritical heat pumps. Energy Conversion and Management. vol. 245. doi.org/10.1016/j.enconman.2021.114591
  • [55] Kodura A., Chludzińska M., Chudzicki J., Rubik M., Umiejewska K., Ziętek P. 2023. Nieoczyszczone ścieki komunalne - dolne źródło pomp ciepła eksploatowanych w instalacjach ogrzewania i przygotowania c.w.u. Ciepłownictwo Ogrzewnictwo Wentylacja. 54 (9). DOI:10.15199/9.2023.9.3
  • [56] Serrat L., Linares J. I., Cledera M. M., Morales C., Hueso K. 2023. Ground source heat pump driven by reciprocating engine firing biomethane from wastewater treatment plant sludge in a cogeneration for district heating and cooling. A case study in Spain. Applied Thermal Engineering. vol. 219, Part B. doi.org/10.1016/j.applthermaleng. 2022.119586
  • [57] Ryńska J., Joniec W. 2022. Pompy ciepła w przemyśle, produkcji i ciepłownictwie. Rynek Instalacyjny. (4): 28-36
  • [58] https://www.ure.gov.pl/pl/urzad/informacje-ogolne/aktualnosci/10761,Cieplownictwo-w-liczbach-najnowszy-raport-URE.html
  • [59] https://wysokienapiecie.pl/75628-pompy-ciepla-maja-wielkaprzyszlosc-takze-w-miejskich-sieciach/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-566d7c99-ff31-430b-8d53-ca0c14300bd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.