Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ intensywnego odkształcenia plastycznego na ewolucję mikrostruktury czystego aluminium
Języki publikacji
Abstrakty
Processes of severe plastic deformation (SPD) are defined as a group of metalworking techniques in which a very large plastic strain is imposed on a bulk material in order to make an ultra-fine grained metal. The present study attempts to apply Equal-Channel Angular Pressing (ECAP), Hydrostatic Extrusion (HE) and combination of ECAP and HE to 99.5% pure aluminium. ECAP process was realized at room temperature for 16 passes through route Bc using a die having an angle of 90°. Hydrostatic extrusion process was performed with cumulative strain of 2.68 to attain finally wire diameter of d = 3 mm. The microstructure of the samples was investigated by means of transmission and scanning electron microscopy. Additionally, the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. The measured grain/subgrain size show, that regardless the mode of deformation process (ECAP, HE or combination of ECAP and HE processes), grain size is maintained at a similar level – equal to d = 0.55-0.59 μm. A combination of ECAP and HE has achieved better properties than either single process and show to be a promising procedure for manufacturing bulk UFG aluminium.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1437--1440
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Non Ferrous Metals, Department of Materials Science and Non – Ferrous Metals Engineering, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Non Ferrous Metals, Department of Materials Science and Non – Ferrous Metals Engineering, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Non Ferrous Metals, Department of Materials Science and Non – Ferrous Metals Engineering, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] Y. Estrin, A. Vinogradov, Acta Materialia 61, 782 (2013).
- [2] R. B. Figueiredo, T. G. Langdon, Materials Transactions 50/7, 1613 (2009).
- [3] A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Manufacturing Tehnology 57, 716 (2008).
- [4] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Progress in Materials Science 45/2, 103 (2000).
- [5] M.W. Richert, B. Leszczyńska-Madej, W. Pachla, J. Skiba, Archives of Metallurgy and Materials 57/4, 911 (2012).
- [6] R. Z. Valiev, Solid State Phenomena 114, 7 (2006).
- [7] V. M. Segal, Mat. Sci. Eng. A 197, 157 (1995).
- [8] K. J. Kim, D.Y. Yang, J.W. Yoon, Mat. Sci. Eng. A 527, 7927 (2012).
- [9] J. Richert, M. Richert, Aluminium 62/8, 604 (1986).
- [10] M. Richert, Archives of Materials Sciences 26/4, 235 (2005).
- [11] M. Richert, B. Leszczyńska, Archives of Metallurgy and Materials 53/3, 721 (2008).
- [12] T. Hebesberger, A. Vorhauer, H.P. Stuwe, R. Pippan, in M.J. Zehetbauer, R.Z. Valiev (Ed.), Influence of the processing parameters at High Pressure Torsion, Proceedings of the Conference ”Nanomaterials by Severe Plastic Deformation NANOSPD2”, Vienna, Austria (2002).
- [13] L. Olejnik, M. Kulczyk, W. Pachla, A. Rosochowski, International Journal of Material Forming 2, 621 (2009).
- [14] K. J. Kurzydłowski, Materials Science Forum 503-504, 341 (2006).
- [15] M. Richert, J. Richert, A. Hotloś, W. Pachla, J. Skiba, J. Journal of Achievements in Materials and Manufacturing Engineering 44/1, 50 (2011).
- [16] M. Kulczyk, J. Skiba, W. Pachla, Archives of Metallurgy and Materials 59/1, 163 (2014).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-566b8832-b45c-4f2d-b114-34914cfb9433