PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Percolation thresholds of 3D all-sided percolation clusters in non-cubic domains

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The critical 3D all-sided percolation clusters in aL×L×L and aL×aL×L threedimensional domains with a side length L and an aspect ratio a obtained from continuous percolation problem were analysed in this paper. The simulations of continuous percolation were performed in parallelepiped domains starting from a = 1 and ending at a = 10 using the Monte Carlo algorithm. The resulting percolation thresholds for the simulated domains and percolation clusters as well as variability of number of cells in a domain and in a percolation cluster with variation of a were analysed. The obtained results are useful for evaluation of a content of electrically conducting particles in the dielectric matrix of a composite developed for aircraft lightning strike protection purposes.
Rocznik
Strony
63--69
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Institute of Fundamentals of Machinery Design, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] Katunin A., Krukiewicz K., Electrical percolation in composites of conducting polymers and dielectrics, J. Polym. Eng. 2015, 35(8), 731-741.
  • [2] Monetti R.A., Albano E.V., Critical behavior of the site percolation model on the square lattice in a L × M geometry, Z. Phys. B Con. Mat. 1991, 82(1), 129-134.
  • [3] Langlands R.P., Pichet C., Pouliot P., Saint-Aubin Y., On the universality of crossing probabilities in two-dimensional percolation, J. Stat. Phys. 1992, 64(3/4), 553-574.
  • [4] Monetti R.A., Albano E.V., Percolation on the square lattice in a L × M geometry, Z. Phys. B Con. Mat. 1993, 90(3), 351-355.
  • [5] Monetti R.A., Albano E.V., Density profiles and correlation function of percolating clusters in finite strips, J. Phys. A Math. Gen. 1993, 26(16), 3955-3962.
  • [6] Ziff R.M., Effective boundary extrapolation length to account for finite-size effects in the percolation crossing function, Phys. Rev. E 1996, 54(3), 2547-2554.
  • [7] Tsubakihara S., Aspect-ratio dependence of percolation probability in a rectangular system, Phys. Rev. E 2000, 62(6), 8811-8813.
  • [8] Watanabe H., Yukawa S., Ito N., Hu C.-K., Superscaling of percolation on rectangular domains, Phys. Rev. Lett. 2004, 93(19), 190601.
  • [9] Watanabe H., Hu C.-K., Mapping functions and critical behavior of percolation on rectangular domains, Phys. Rev. E 2008, 78(4), 041131.
  • [10] Lorenz C.D., Ziff R.M., Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation, J. Phys. A Math. Gen. 1998, 31(40) 8147-8157.
  • [11] Lin C.-Y., Hu C.-K., Chen J.-A., Universality of critical existence probability for percolation on three-dimensional lattices, J. Phys. A Math. Gen. 1998, 31(5), L111-L117.
  • [12] Marrink S.J., Kanckstedt M.A., Percolation thresholds on elongated lattices, J. Phys. A Math. Gen. 1999, 32(44), L461-L466.
  • [13] Gimel J.C., Nicolai T., Durand D., Crossing probabilities in one, two or three directions for percolation on a cubic lattice, J. Phys. A Math. Gen. 1999, 32(48), L515-L519.
  • [14] Norizoe Y., Jinnai H., Takahara A., Two-dimensional percolation phenomena of singlecomponent linear homopolymer brushes, J. Chem. Phys. 2014, 140, 054904.
  • [15] Katunin A., Krukiewicz K., Herega A., Catalanotti G., Concept of a conducting composite material for lightning strike protection, Adv. Mater. Sci. 2016, in press.
  • [16] Krukiewicz K., Katunin A., The effect of reaction medium on the conductivity and morphology of polyaniline doped with camphorsulphonic acid, Synth. Met. 2016, 214, 45-49.
  • [17] Catalanotti G., Katunin A., Modelling the electro-mechanical properties of PPy/epoxy conductive composites, Comput. Mater. Sci. 2016, 113, 88-97.
  • [18] Herega A., Report on the realization of three-dimensional percolation model, Internal report of the project INTER realized according the contract no. 128/UD/SKILLS/2015, Odessa, 20.12.2015.
  • [19] Bhadra J., Sarkar D., Size variation of polyaniline nanoparticles dispersed in polyvinyl alcohol metrix, Bull. Mater. Sci. 2010, 33(5), 519-523.
  • [20] Kondawar S.B., Deshpande M.D., Agrawal S.P., Transport properties of conductive polyaniline nanocomposites based on carbon nanotubes, Int. J. Compos. Mater. 2012, 2(3), 32-36.
  • [21] Katunin A., Analysis of critical percolation clusters of mixtures of conducting and dielectric polymers, J. Appl. Math. Comput. Mech. 2016, 15(1), 59-69.
  • [22] Katunin A., Krukiewicz K., Turczyn R., Sul P., Łasica A., Bilewicz M., Synthesis and characterization of the electrically conductive polymeric composite for lightning strike protection of aircraft structures, Compos. Struct. 2017, 159, 773-783.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56676ca4-b6fe-4992-845d-fdbf8d5fb52e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.