PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By many chronic lung diseases, there is a problem of recurrent bacterial infections that require frequent usage of antibiotics. They can be more effective and cause fewer side effects when administrated directly via the pulmonary route. For such purposes, various types of inhalers are used of which dry powder inhalers (DPIs) are one of the most common. Formulations such as dry powders usually consist of an active pharmaceutical ingredient (API) and a carrier material that is supposed to provide adequate properties to deliver the bioactive molecules to the site of action, effectively. Copolymers of sebacic acid (SA) and poly(ethylene glycol) (PEG) have been regarded as suitable materials for such formulations. Here, we present a study about the manufacturing of microparticles from such materials dedicated to inhalation which have been loaded with azithromycin (AZM). The microparticles (MPs) were 0.5 to 5 μm in size, presenting either a spherical or elongated shape depending on the material type and composition. The encapsulation efficiency (EE) of the MPs were almost complete with the drug loading up to 23.1 %. The powders had fair or good flowability based on Carr’s index and Hausner ratio. Due to the presence of the drug, the tendency to agglomerate decreased. As a result, up to 90 % of the obtained powders showed diameters below 5 μm. Also, the fine particles fraction (FPF) of the chosen formulation reached 66.3 ± 4.5 % and the mass median aerodynamic diameter was 3.8 ± 0.4 μm. The microparticles degraded quickly in vitro losing up to 50 % of their mass within 24 h and up to 80 % within 96 h of their incubation in phosphate-buffered saline (PBS). They were also nontoxic up to 100 μg/ml when added to cultures of A549 and BEAS-2B lung epithelial cells as well as to rat lung tissue slices tested ex vivo. The microparticles showed bactericidal effects against various strains of Staphylococcus aureus in lower than cytotoxic concentrations.
Twórcy
  • Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
  • Faculty of Electrical Engineering, Automatics, Computer Science, and Biomedical Engineering, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
  • Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
  • Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Chair of Dispersed Systems Engineering, Faculty of Chemical and Process Engineering Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
  • Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
  • Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
  • Chair of Dispersed Systems Engineering, Faculty of Chemical and Process Engineering Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
  • Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Patil JS, Sarasija S. Pulmonary drug delivery strategies: A concise, systematic review. Lung India 2012;29(1):44-9.
  • [2] Dima E, Kyriakoudi A, Kaponi M, Vasileiadis I, Stamou P, Koutsoukou A, et al. The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): Current perspectives. Respir Med 2019; 157:1-6.
  • [3] Martin I, Waters V, Grasemann H. Approaches to Targeting Bacterial Biofilms in Cystic Fibrosis Airways. Int J Mol Sci 2021;22(4):2155.
  • [4] Hershberg R. Antibiotic-Independent Adaptive Effects of Antibiotic Resistance Mutations. Trends Genet 2017;33(8):521-8.
  • [5] Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regener Biomater 2023;10:rbac099.
  • [6] ElKasabgy NA, Adel IM, Elmeligy MF. Respiratory Tract: Structure and Attractions for Drug Delivery Using Dry Powder Inhalers. AAPS Pharm SciTech 2020;21(7): 238.
  • [7] Hickey AJ. Emerging trends in inhaled drug delivery. Adv Drug Deliv Rev 2020; 157:63-70.
  • [8] Akkerman-Nijland AM, Grasmeijer F, Kerstjens HAM, Frijlink HW, van der Vaart H, Vonk JM, et al. Colistin dry powder inhalation with the TwincerTM: An effective and more patient friendly alternative to nebulization. PLoS One 2020;15(9): e0239658.
  • [9] Emeryk A, Sosnowski TR, Kupczyk M, Śliwiński P, Zajdel-Całkowska J, Zielonka TM, et al. Impact of Inhalers Used in the Treatment of Respiratory Diseases on Global Warming. Advances in Respiratory Medicine 2021;89(4): 427-38.
  • [10] Encinas-Basurto D, Eedara BB, Mansour HM. Biocompatible biodegradable polymeric nanocarriers in dry powder inhalers (DPIs) for pulmonary inhalation delivery. J Pharm Investig 2024;54:145-60.
  • [11] Kanojia N, Singh S, Singh J, Sharma N, Singh G, Rani L, et al. Recent Advancements and Applications of Inhalable Microparticles Based Drug Delivery Systems in Respiratory Disorders. Biointerface Res Appl Chem 2021;11(3):10099-118.
  • [12] Douafer H, Andrieu V, Brunel JM. Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases. J Control Release 2020;325: 276-92.
  • [13] DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL. Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Sci Tech 2004;38(12):1185-205.
  • [14] Nishimura S, Takami T, Murakami Y. Porous PLGA microparticles formed by ‘onestep’ emulsification for pulmonary drug delivery: The surface morphology and the aerodynamic properties. Colloids Surf B Biointerfaces 2017;159:318-26.
  • [15] Zhang X, Qin L, Su J, Sun Y, Zhang L, Li J, et al. Engineering large porous microparticles with tailored porosity and sustained drug release behavior for inhalation. Eur J Pharm Biopharm 2020;155:139-46.
  • [16] Xiong B, Chen Y, Liu Y, Hu X, Han H, Li G. Artesunate-loaded porous PLGA microsphere as a pulmonary delivery system for the treatment of non-small cell lung cancer. Colloids Surf B Biointerfaces 2021;206:111937.
  • [17] Ceschan NE, Bucal´a V, Ramírez-Rigo MV. Levofloxacin dry powder inhaler for high dose delivery. Powder Technol 2024;432:119168.
  • [18] Arauzo B, Lopez-Mendez TB, Lobera MP, Calzada-Funes J, Pedraz JL, Santamaria J. Excipient-Free Inhalable Microparticles of Azithromycin Produced by Electrospray: A Novel Approach to Direct Pulmonary Delivery of Antibiotics. Pharmaceutics 2021;13(12):1988.
  • [19] Alhajj N, Yahya MFZR, O’Reilly NJ, Cathcart H. Development and characterization of a spray-dried inhalable ternary combination for the treatment of Pseudomonas aeruginosa biofilm infection in cystic fibrosis. Eur J Pharm Sci 2024;192:106654.
  • [20] Xu Z, Bera H, Wang H, Wang J, Cun D, Feng Y. Inhalable ciprofloxacin/polymyxin B dry powders in respiratory infection therapy. Acta Materia Medica 2023;2(2): 142-56.
  • [21] Wong SN, Weng J, Ip I, Chen R, Lakerveld R, Telford R, et al. Rational Development of a Carrier-Free Dry Powder Inhalation Formulation for Respiratory Viral Infections via Quality by Design: A Drug-Drug Cocrystal of Favipiravir and Theophylline. Pharmaceutics 2022;14(2):300.
  • [22] Al HT, Vishwa B, Lila ASA, Alotaibi HF, Khafagi ES, Moin A, et al. Pulmonary Targeting of Levofloxacin Using Microsphere-Based Dry Powder Inhalation. Pharmaceuticals 2022;15(5):560.
  • [23] De Rubis G, Raj PK, Corrie L, Mehndirrata S, Patel VK, Kumbhar PS, et al. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. Naunyn-Schmiedeberg’s Archives of Pharmacology 2024;397(5):2793-833.
  • [24] Conte G, Costabile G, Baldassi D, Rondelli V, Bassi R, Colombo D, et al. Hybrid Lipid/Polymer Nanoparticles to Tackle the Cystic Fibrosis Mucus Barrier in siRNA Delivery to the Lungs: Does PEGylation Make the Difference? ACS Appl Mater Interfaces 2022;14(6):7565-78.
  • [25] Ziaei E, Emami J, Rezazadeh M, Kazemi M. Pulmonary Delivery of Docetaxel and Celecoxib by PLGA Porous Microparticles for Their Synergistic Effects Against Lung Cancer. Anticancer Agents Med Chem 2022;22(5):951-67.
  • [26] Gaspar MC, Pais AACC, Sousa JJS, Brillaut J, Olivier J-C. Development of levofloxacinloaded PLGA microspheres of suitable properties for sustained pulmonary release. Int J Pharm 2019;556:117-24.
  • [27] Akkerman-Nijland AM, Yousofi M, Rottier BL, van der Vaart H, Burgerhof JGM, Frijlink HW, et al. Eradication of Pseudomonas aeruginosa in cystic fibrosis patients with inhalation of dry powder tobramycin. Ther Adv Respir Dis 2020;14.
  • [28] Ernst J, Klinger-Strobel M, Arnold K, Thamm J, Hartung A, Pletz MW, et al. Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions. Eur J Pharm Biopharm 2018;131:120-9.
  • [29] Günday TN, Torge A, Juntke J, Schwarz BC, Schneider-Daun N, Emre TA, et al. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm 2017;117:363-71.
  • [30] d’Angelo I, Casciaro B, Miro A, Quaglia F, Mangoni ML, Ungaro F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B Biointerfaces 2015;135:717-25.
  • [31] Kaleem MA, Alam MZ, Khan M, Jaffery SHI, Rashid B. An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes. Met Powder Rep 2021;76:S50-4.
  • [32] Khoshnood S, Shirani M, Dalir A, Moradi M, Haddadi MH, Sadeghifard N, et al. Antiviral effects of azithromycin: A narrative review. Biomed Pharmacother 2022; 147:112682
  • [33] Schwartz RA, Suskind RM. Post-COVID-19 neuropsychiatric manifestations: a suggested therapeutic approach to ‘long COVID’ with azithromycin. Epidemiol Infect 2024;152(e34):1-2.
  • [34] Yang J. Mechanism of azithromycin in airway diseases. J Int Med Res 2020;48(6).
  • [35] Southern KW, Solis-Moya A, Kurz D, Smith S. Macrolide antibiotics (including azithromycin) for cystic fibrosis. Cochrane Database Syst Rev 2024;2(CD002203).
  • [36] Montón C, Prina E, Pomares X, Cugat JR, Casabella A, Oliva JC, et al. Nebulized Colistin And Continuous Cyclic Azithromycin In Severe COPD Patients With Chronic Bronchial Infection Due To Pseudomonas aeruginosa: A Retrospective Cohort Study. International Journal if Chronic Obstructive Pulmonary Disease 2019;14:2365-73.
  • [37] Cuevas E, Huertas D, Montón C, Marin A, Carrera-Salinas A, Pomares X, et al. Systemic and functional effects of continuous azithromycin treatment in patients with severe chronic obstructive pulmonary disease and frequent exacerbations. Frontiers in Medicine (Lausanne) 2023;10:1229463.
  • [38] De la Rosa Carrillo D, Martínez-García MA, Barreiro E, Tabernero HE, Costa SR, García-Clemente MM, et al. Effectiveness and Safety of Inhaled Antibiotics in Patients With Chronic Obstructive Pulmonary Disease. A Multicentre Observational Study. Archivos de Bronconeumología 2022;58(1):11-21.
  • [39] Alrashedi MG, Ali AS, Ahmed OA, Ibrahim IM. Local Delivery of Azithromycin Nanoformulation Attenuated Acute Lung Injury in Mice. Molecules 2022;27(23): 8293.
  • [40] Kasten G, Silva LFC, Lemos-Senna E. Development of low density azithromycin-loaded polycaprolactone microparticles for pulmonary delivery. Drug Dev Ind Pharm 2016;42(5):776-87.
  • [41] Wang Q, Mi G, Hickey D, Li Y, Tu J, Webster TJ, et al. Azithromycin-loaded respirable microparticles for targeted pulmonary delivery for the treatment of pneumonia. Biomaterials 2018;160:107-23.
  • [42] Dallal BY, H., Ali A., Al Ayoub Y., Assi K. H., Mairs R., McCarthy H.O.,, et al. Inhaled dry powder liposomal azithromycin for treatment of chronic lower respiratory tract infection. Int J Pharm 2024;653:123841.
  • [43] Craparo EF, Drago SE, Quaglia F, Ungaro F, Cavallaro G. Development of a novel rapamycin loaded nano- into micro-formulation for treatment of lung inflammation. Drug Deliv Transl Res 2022;12(8):1859-72.
  • [44] Chan SHY, Sheikh K, Zariwala MG, Somavarapu S. Dry powder formulation of azithromycin for COVID-19 therapeutics. J Microencapsul 2023;40(4):217-32.
  • [45] Lababidi N, Montefusco-Pereira CV, de Souza Carvalho-Wodarz C, Lehr C-M, Schneider M. Spray-dried multidrug particles for pulmonary co-delivery of antibiotics with N-acetylcysteine and curcumin-loaded PLGA-nanoparticles. Eur J Pharm Biopharm 2020;157:200-10.
  • [46] Arauzo B, González-Garcinuño Á, Tabernero A, Calzada-Funes J, Pilar LM, Martín del Valle EM, et al. Engineering Alginate-Based Dry Powder Microparticles to a Size Suitable for the Direct Pulmonary Delivery of Antibiotics. Pharmaceutics 2022;14(12):2763.
  • [47] Knap K, Reczyńska-Kolman K, Kwiecień K, Niewolik D, Płonka J, Ochońska D, et al. Poly(sebacic acid) microparticles loaded with azithromycin as potential pulmonary drug delivery system: Physicochemical properties, antibacterial behavior, and cytocompatibility studies. Biomaterials Advances 2023;153:213540.
  • [48] Arun Y, Ghosh R, Domb AJ. Poly(ester-anhydrides) Derived from Esters of Hydroxy Acid and Cyclic Anhydrides. Biomacromolecules 2022;23(8):3417-28.
  • [49] Basu A, Domb AJ. Recent Advances in Polyanhydride Based Biomaterials. Adv Mater 2018;30(41):1706815.
  • [50] Zhao A, Zhou Q, Chen T, Weng J, Zhou S. Amphiphilic PEG-based ether-anhydride terpolymers: Synthesis, characterization, and micellization. J Appl Polym Sci 2010; 118(6):3576-85.
  • [51] Fu J, Fiegel J, Hanes J. Synthesis and Characterization of PEG-Based Ether-Anhydride Terpolymers: Novel Polymers for Controlled Drug Delivery. Macromolecules 2004;37(19):7174-80.
  • [52] Kim BS, Hrkach JS, Langer R. Synthesis and characterization of novel degradable photocrosslinked poly(ether-anhydride) networks. J Polym Sci A Polym Chem 2000;38(8):1277-82.
  • [53] Yu Y, Lu T, Zhao W, Sun W, Chen T. Preparation and characterization of BSA-loaded microspheres based on polyanhydrides. J Appl Polym Sci 2011;121(1): 352-8.
  • [54] Tang BC, Fu J, Watkins DN, Hanes J. Enhanced efficacy of local etoposide delivery by poly(ether-anhydride) particles against small cell lung cancer in vivo. Biomaterials 2010;31(2):339-44.
  • [55] Fiegel J, Fu J, Hanes J. Poly(ether-anhydride) dry powder aerosols for sustained drug delivery in the lungs. J Control Release 2004;96(3):411-23.
  • [56] Farmakopea Polska. Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych, issue IX, vol. 1, Warsaw. 2011. ISBN: 978-83-88157-77-6.
  • [57] “Inhaler Testing Brochure 2024,” calameo.com. Accessed: Aug. 27, 2024. Available: https://www.calameo.com/copleyscientific/read/006693220f5f2991cffed?page=84.
  • [58] Kwiecień K, Pudełko I, Knap K, Reczyńska-Kolman K, Krok-Borkowicz M, Ochońska D, et al. Insight in Superiority of the Hydrophobized Gentamycin in Terms of Antibiotics Delivery to Bone Tissue. Int J Mol Sci 2022;23(20):12077.
  • [59] Ruigrok MJR, Tomar J, Frijlink HW, Melgert BN, Hinrichs WLJ, Olinga P. The effects of oxygen concentration on cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in precision-cut lung slices. Sci Rep 2019;9(1): 16239.
  • [60] Jain H, Bairagi A, Srivastava S, Singh SB, Mehra NK. Recent advances in the development of microparticles for pulmonary administration. Drug Discov Today 2020;25(10):1865-72.
  • [61] Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M, et al. Development of azithromycin-PLGA nanoparticles: Physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B Biointerfaces 2010;80(1):34-9.
  • [62] Kala SG, Chinni S. Synthesis, Characterization and Comparison of Novel Poly (sebacic anhydride) Biopolymeric Implants and Microspheres for the Controlled Release of an Anticancer Drug. Indian Journal of Pharmaceutical Education and Research 2022;56(2):429-37.
  • [63] Niewolik D, Bednarczyk-Cwynar B, Ruszkowski P, Sosnowski TR, Jaszcz K. Bioactive Betulin and PEG Based Polyanhydrides for Use in Drug Delivery Systems. Int J Mol Sci 2021;22(3):1090.
  • [64] Kasiński A, Zielińska-Pisklak M, Oledzka E, Nałęcz-Jawecki G, Drobniewska A, Sobczak M. Hydrogels Based on Poly(Ether-Ester)s as Highly Controlled 5-Fluorouracil Delivery Systems - Synthesis and Characterization. Materials 2021;14(1):98.
  • [65] Heiskanen H, Denifl P, Hurme M, Pitkänen P, Oksman M. Effect of Physical Properties and Emulsification Conditions on the Microsphere Size Prepared Using a Solvent Extraction Process. J Dispers Sci Technol 2012;33(2):234-44.
  • [66] El-Sherbiny IM, El-Baz NM, Yacoub MH. Inhaled nano- and microparticles for drug delivery. Global Cardiology Science and Practice 2015;2015(1).
  • [67] Nielsen GD, Koponen IK. Insulation fiber deposition in the airways of men and rats. A review of experimental and computational studies. Regul Toxicol Pharm 2018; 94:252-70.
  • [68] Buttini F, Brambilla G, Copelli D, Sisti V, Balducci AG, Bettini R, et al. Effect of Flow Rate on In Vitro Aerodynamic Performance of NEXThaler® in Comparison with Diskus® and Turbohaler® Dry Powder Inhalers. J Aerosol Med Pulm Drug Deliv 2016;29(2):167-78.
  • [69] Araújo F, Martins C, Azevedo C, Sarmento B. Chemical modification of drug molecules as strategy to reduce interactions with mucus. Adv Drug Deliv Rev 2018; 124:98-106.
  • [70] Yue L, Zhang X, Zhao C, Chen R, Chen X, Rao L. Inhaled drug delivery: Past, present, and future. Nano Today 2023;52:101942.
  • [71] Liang Y, Xiao L, Zhai Y, Xie C, Deng L, Dong A. Preparation and characterization of biodegradable poly(sebacic anhydride) chain extended by glycol as drug carrier. J Appl Polym Sci 2013;127(5):3948-53.
  • [72] Fröhlich E, Salar-Behzadi S. Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies. Int J Mol Sci 2014;15(3): 4795-822.
  • [73] Nassimi M, Schleh C, Lauenstein HD, Hussein R, Lübbers K, Pohlmann G, et al. Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal Toxicol 2009;21(1):104-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56667715-ad04-4ba4-9069-1f3fc7299489
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.