Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper reviews the static equilibrium of a micropolar porous elastic material. We assume that the body under consideration is an elastic Cosserat media with voids, however, it can also be considered as an elastic microstretch solid, since the basic differential equations and mathematical formulations of boundary value problems in these two cases are actually identical. As regards the three-dimensional case, the existence and uniqueness of a weak solution of some boundary value problems are proved. The two-dimensional system of equations corresponding to a plane deformation case is written in a complex form and its general solution is presented with the use of two analytic functions of a complex variable and two solutions of the Helmholtz equations. On the basis of the constructed general representation, specific boundary value problems are solved for a circle and an infinite plane with a circular hole.
Czasopismo
Rocznik
Tom
Strony
485--509
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, 0186, University Street, Tbilisi, Georgia
- Georgian National University SEU, 9 Tsinandali Street, Tbilisi, Georgia
autor
- Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, 0186, University Street, Tbilisi, Georgia
autor
- Gori State Teaching University, 53 Chavchavadze Ave., Gori, Georgia
Bibliografia
- 1. E. Cosserat, F. Cosserat, Theorie des Corps Deformables, Hermann, Paris, 1909.
- 2. C. Truesdell, R.A. Toupin, The Classical Field Theories, Handbuch der Physik, S. Flügge [ed.], Bd. III/1, Springer, Berlin-Göttingen-Heidelberg, 1960.
- 3. A.E. Green, P.M. Naghdi, Linear theory of an elastic Cosserat plate, Proceedings of the Cambridge Philosophical Society, 63, 2, 537–550, 1967.
- 4. W. Nowacki, On the completeness of stress functions in asymmetric elasticity, Bulletin of the Polish Academy of Sciences, Technical Sciences, 16, 7, 1968.
- 5. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, T.V. Burchuladze, Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Publishing Company, Amsterdam, 1979.
- 6. W. Nowacki, Theory of Asymmetric Elasticity, Polish Scientific Publishers, Warsaw, 1986.
- 7. S.C. Cowin, J.W. Nunziato, Linear elastic materials with voids, Journal of Elasticity, 13, 2, 125–147, 1983.
- 8. S.C. Cowin, P. Puri, The classical pressure vessel problems for linear elastic materials with voids, Journal of Elasticity, 13, 2, 157–163, 1983.
- 9. D. Iesan, Some theorems in the theory of elastic materials with voids, Journal of Elasticity: the Physical and Mathematical Science of Solids, 15, 2, 215–224, 1985.
- 10. P. Puri, S.C. Cowin, Plane waves in linear elastic materials with voids, Journal of Elasticity, 15, 2, 167–183, 1985.
- 11. D. Iesan, A theory of thermoelastic materials with voids, Acta Mechanica, 60, 1–2, 67–89, 1986.
- 12. D.S. Chandrasekharaiah, Complete solutions in the theory of elastic materials with voids, The Quarterly Journal of Mechanics and Applied Mathematics, 40, 3, 401–414, 1987.
- 13. A. Pompei, A. Scalia, On the steady vibrations of elastic materials with voids, Journal of Elasticity: the Physical and Mathematical Science of Solids, 36, 1, 1–26, 1994.
- 14. I. Tsagareli, Explicit solution of elastostatic boundary value problems for the elastic circle with voids, Advances in Mathematical Physics, Article ID 6275432, 6 pages, 2018, https://doi.org/10.1155/2018/6275432.
- 15. B. Gulua, R. Janjgava, On construction of general solutions of equations of elastostatic problems for the elastic bodies with voids, PAMM Journal, 18, 1, 2018, 18(1):e201800306, DOI: 10.1002/pamm.201800306.
- 16. G. Rusu, Existence theorems in elastostatics of materials with voids, Scientific Annals of the Alexandru Ioan Cuza University of Iasi Mathematics, 30, 193–204, 1985.
- 17. E. Scarpetta, On the fundamental solutions in micropolar elasticity with voids, Acta Mechanica, 82, 3–4, 151–158, 1990.
- 18. M. Ciarletta, A. Scalia, M. Svanadze, Fundamental solution in the theory of micropolar thermoelasticity for materials with voids, Journal of Thermal Stresses, 30, 3, 213–229, 2007.
- 19. R. Kumar, T. Kansal, Fundamental solution in the theory of micropolar thermoelastic diffusion with voids, Computational and Applied Mathematics, 31, 1, 169–189, 2012.
- 20. A.C. Eringen, Micropolar elastic solids with stretch, in: Prof. Dr. Mustafa Inan Anisina, Ari Kitabevi Matbaasi, Istanbul, 1–18, 1971.
- 21. A.C. Eringen, Theory of thermo-microstretch elastic solids, International Journal of Engineering Science, 28, 12, 1291–1301, 1990.
- 22. A.C. Eringen, Electromagnetic theory of microstretch elasticity and bone modeling, International Journal of Engineering Science, 42, 231–242, 2004.
- 23. M. Ciarletta, On the bending of microstretch elastic plates, International Journal of Engineering Science, 37, 1309–1318, 1999.
- 24. M. Ciarletta, A. Scalia, Some results in linear theory of thermomicrostretch, Meccanica, 39, 91–206, 2004.
- 25. M. Ciarletta, M. Svanadze, L. Buonanno, Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids, European Journal of Mechanics A/Solids, 28, 4, 897–903, 2009.
- 26. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, Holland, 1953.
- 27. P.G. Ciarlet, Mathematical Elasticity, I. Three-Dimensional Mathematical Elasticity, North-Holland, Amsterdam, 1988.
- 28. G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin, 1976.
- 29. I.N. Vekua, Shell Theory: General Methods of Construction, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985.
- 30. T.V. Meunargia, Development of a Method of I. N. Vekua for Problems of the Three-dimensional Moment Theory Elasticity, Publisher TSU, Tbilisi, 1987 [in Russian].
- 31. R. Janjgava, Elastic equilibrium of porous Cosserat media with double porosity, Advances in Mathematical Physics, Article ID 4792148, 9 pages, 2016, http://dx.doi.org/10.1155/2016/4792148.
- 32. R. Janjgava, The approximate solution of some plane boundary value problems of the moment theory of elasticity, Advances in Mathematical Physics, Article ID3845362, 12 pages, 2016, http://dx.doi.org/10.1155/2016/3845362.
- 33. R. Janjgava, approximate solution of some plane boundary value problems for perforated Cosserat elastic bodies, Advances in Applied Mathematics and Mechanics, 11, 1064–1083, DOI: 2019.10.4208/aamm.OA-2018-0019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5665aeb1-79d0-4a27-be8d-0cdadb413d8c