Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Stainless steels have a wide usage field, their needs as structural parts are increasing day by day due to their resistance to corrosion and providing sufficient mechanical strength in environments that would cause corrosion. In addition to high mechanical properties of the stainless steels, the low heat transmission coefficients bring problems during machining. In this study, the suitable cutting tool and cutting parameters have been evaluated in terms of cutting forces and the tool temperature, the experimental results and finite element analysis have been compared in the milling of Custom 450 stainless steel which offers especially an excellent working opportunity at high temperature and salinity environment. Milling experiments have been carried out using L16 experimental design for Taguchi method. Four simulations have been made using finite element method with corresponding values in L16 orthogonal array for optimum cutting tool and the results were compared in terms of cutting forces and tool temperature changes.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
843--853
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab., wzory
Twórcy
autor
- Industrial Design Engineering Department in Gazi University, Ankara, Turkey
Bibliografia
- [1] H. Gökçe, Optimisation of cutting tool and cutting parameters in face milling of custom 450 through the taguchi method, Advances in Materials Science and Engineering 2019, 1-10 (2019). DOI: https://doi.org/10.1155/2019/5868132
- [2] Y. Turgut, H. Çinici, İ. Şahin, T. Fındık, Study of cutting force and surface roughness in milling of Al/Sic metal matrix composites, Scientific Research and Essays 6 (10), 2056-2062 (2011). DOI: https://doi.org/10.5897/SRE10.496
- [3] A. Kulkarni, V. Sargade, C. More, Machinability investigation of AISI 304 austenitic stainless steels using multilayer AlTiN/TiAlN coated carbide inserts, Procedia Manufacturing 20 (1), 548-553 (2018). DOI: https://doi.org/10.1016/j.promfg.2018.02.082
- [4] E. Altınkaya, A. Güllü, The effects of tool coating and cutting speed on tool wearing in the machining of stainless steel, Journal of Polytechnic 11 (3), 243-247 (2008). DOI: https://doi.org/10.2339/2008.11.3.243-247
- [5] H. Gökçe, M. Yavuz, H. Gökçe, U. Şeker, Verification with finite element methods of drilling performance for original drill geometry, Gazi Journal of Engineering Sciences 3 (1), 27-34 (2017).
- [6] H. Gürbüz, U. Şeker, F. Kafkas, Investigation of effects of cutting insert rake face forms on surface integrity, The International Journal of Advanced Manufacturing Technology 90 (9-12), 3507-3522 (2017). DOI: https://doi.org/10.1007/s00170-016-9652-7
- [7] İ. Korkut, M. Kasap, İ. Çiftçi, U. Şeker, Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel, Materials and Design 25 (4), 303-305 (2004). DOI: https://doi.org/10.1016/j.matdes.2003.10.011
- [8] J. Rajaparthiban, A.N. Sait, Experimental investigation on machining of titanium alloy and optimization of its parameters using ann, Mechanics 24 (4), 449-455 (2018). DOI: https://doi.org/10.5755/j01.mech.24.4.20251
- [9] E. Budak, Y. Altintas, E.J. Armarego, Prediction of milling force coefficients from orthogonal cutting data, Journal of Manufacturing Science and Engineering 118 (2), 216-224 (1996). DOI: https://doi.org/10.1115/1.2831014
- [10] E. Kuram, Effects of different coating materials on tool wear, cutting forces and surface roughness in milling of AISI 304, Journal of Polytechnic 19 (4), 433-443 (2016).
- [11] G. Uzun, İ. Korkut, The effects of cutting conditions on the cutting torque and tool life in the tapping process for AISI 304 stainless steel, Materials and Technology 50 (2), 275-280 (2016). DOI: https://doi.org/10.17222/mit.2015.044
- [12] Y. Fedai, A. Unuvar, H.K. Akın, G. Başar, ANFIS modeling of surface roughness in milling operation of 316L stainless steels, Düzce University Journal of Science and Technology 7 (1), 98-110 (2019).
- [13] W. Zhang, X. Wang, Y. Hu, S. Wang, Predictive modelling of microstructure changes, micro hardness and residual stress in machining of 304 austenitic stainless steel, International Journal of Machine Tools and Manufacture 130-131 (1), 36-48 (2018). DOI: https://doi.org/10.1016/j.ijmachtools.2018.03.008
- [14] R. Shashanka, O. Uzun, D. ChairaCakan, Synthesis of nanostructured duplex and ferritic stainless steel powders by dry milling and its comparison with wet milling, archives of Metallurgy and Materials 65 (1), 5-14 (2020). DOI: https://doi.org/10.24425/amm.2019.131091
- [15] H. Gökçe, İ. Çiftçi, H. Demir, Cutting parameter optimization in shoulder milling of commercially pure molybdenum, Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (360), 1-11 (2018). DOI: https://doi.org/10.1007/s40430-018-1280-8
- [16] G. Basmacı, Optimization of processing parameters of AISI 316-Ti stainless steels, Academic Platform Journal of Engineering and Science 6 (3), 1-7 (2018).
- [17] A. Selaimia, M.A. Yallese, H. Bensouilah, I. Meddour, R. Khattabi, T. Mabrouki, Modeling and optimization in dry face milling of X2CrNi18-9 austenitic stainless steel using RMS and desirability approach, Measurements 107 (1), 53-67 (2017). DOI: https://doi.org/10.1016/j.measurement.2017.05.012
- [18] V. Varghese, D. Chakradhar, M.R. Ramesh, Micro mechanical characterization and wear performance of TiAlN/NbN PVD coated carbide inserts during end milling of AISI 304 austenitic stainless steel, Materials Today: Proceedings 5 (1), 12855-12862 (2018). DOI: https://doi.org/10.1016/j.matpr.2018.02.270
- [19] E. Kuram, B. Özçelik, Micro milling performance of AISI 304 stainless steel using taguchi method and fuzzy logic modelling, Journal of Intellectual Manufacturing 27 (1), 817-830 (2016). DOI: https://doi.org/10.1007/s10845-014-0916-5
- [20] T.R. Lin, Optimization technique for face milling stainless steel with multiple performance characteristics, International Journal of Advanced Manufacturing Technology 19 (1), 330-335 (2002). DOI: https://doi.org/10.1007/s001700200021
- [21] T.R. Lin, Experimental study of burr formation and tool chipping in the face milling of stainless steel, Journal of Materials Processing Technology, 108 (1), 12-20 (2000). DOI: https://doi.org/10.1016/s0924-0136(00)00573-2
- [22] M. Nordin, R. Sundstrom, T. I. Selinder, and S. Hogmark, Wear and failure mechanisms of multilayered PVD TiN/TaN coated tools when milling austenitic stainless steel, Surface and Coatings Technology 133-134, 240-246, (2000).
- [23] A. Qasim, S. Nisar, A. Shah, M.S. Khalid, M.A. Sheikh, Optimization of process parameters for machining of AISI 1045 steel using taguchi design and anova, Simulation Modelling Practice and Theory 59 (1), 36-51 (2015). DOI: https://doi.org/10.1016/j.simpat.2015.08.004
- [24] A.M. Pantel, M. Fontaine, G. Michel, S. Thibaud, J.C. Gelin, Experimental Investigations from Conventional to High-Speed Milling on a 304L Stainless Steel, International Journal of Advanced Manufacturing Technology 69 (1), 2191-2213 (2013). DOI: https://doi.org/10.1007/s00170-013-5159-7
- [25] https://www.ulbrich.com/uploads/data-sheets/Custom-450-Stainless-steel-UNS-s45000.pdf.
- [26] H. Gökçe, Prediction of nonlinear dynamic impact force history by finite element method, Journal of Engineering Science and Technology Review 11 (2), 32-37 (2018). DOI: https://doi.org/10.25103/jestr.113.07
- [27] M. Storchak, P. Rupp, H.C. Möhring, T. Stehle, Determination of Johnson-Cook constitutive parameters for cutting simulations, Metals 9 (473), 1-17 (2019). DOI: https://doi.org/10.3390/met9040473
- [28] R. Chandrasekaran, H. Chazal, Modeling of Material Flow Stress in Chip Formation Process from Orthogonal Milling and Split Hopkinson Bar Test, Machine Science and Technology 9 (1), 131-145 (2005). DOI: https://doi.org/10.1081/MST-200051380
- [29] M. Günay, T. Meral, Modelling and multiresponse optimization for minimizing burr height, thrust force and surface roughness in drilling of ferritic stainless steel, Indian Academy of Sciences 45, 275 (2020). DOI: https://doi.org/10.1007/s12046-020-01490-3.
- [30] T. Meral, M. Günay, Modelling and optimization of burr height in fiber laser drilling of ferritic stainless steel, Manufacturing Technologies and Applications 1 (2), 32-39 (2020).
- [31] A. Mavi, Gri ilişkisel analiz yöntemi ile dubleks paslanmaz çeliklerin delinmesinde yüzey form özelliklerini etkileyen optimum kesme parametrelerinin belirlenmesi, Gazi University Journal of Science Part C: Design and Technology 6, 634-643 (2018).
- [32] E. Ekici, A.R. Motorcu, G. Uzun, An investigation of the effects of cutting parameters and graphite reinforcement on quality characteristics during the drilling of Al/10B4C composites, Measurement 95, 395-404 (2017).
- [33] G. Uzun, U. Gökmen, H. Çinici, M. Türker, Effect of cutting parameters on the drilling of AISI7 metallic foams”, Materials and Technology 51 (1), 19-24 (2017).
- [34] İ. Çitci, H. Gökçe, Optimisation of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi Method, Journal of the Faculty of Engineering and Architecture of Gazi University 34, 1, 201-213 (2019). DOI: https://doi.org/10.17341/gazimmfd.416482
- [35] A. Yıldız, A. Kurt, A., S. Yağmur, Finite element simulation of drilling operation and theoretical analysis of drill stresses with the deform-3D, Simulation Modelling Practice and Theory, 104, (2020).
- [36] A. Attanasioa, F. Fainia, J.C. Outeirob, FEM Simulation of Tool Wear in Drilling, Procedia CIRP 58, 440-444 (2017).
- [37] U.M.R. Paturi, S.K.N. Narala, R.S. Pundir, Constitutive flow stress formulation, model validation and Fe cutting simulation for AA7075-T6 aluminum alloy, Materials Science and Engineering: A 605, 176-185 (2014).
- [38] A. Majeed, A. Iqbal, J. Lv, Enhancement of tool life in drilling of hardened AISI 4340 steel using 3D FEM modeling, The International Journal of Advanced Manufacturing Technology 95, 1875-1889 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5664c104-ecd8-46ad-be5c-5772a4d4b97a