PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microscopic Analysis of the Aluminium Castings Produced with the use of Polymer Composite Patterns

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a microscopic analysis of the surface and fracture of aluminium castings produced using the lost-wax method for patterns made of a composite material, i.e. polyethylene with the addition of bentonite. Castings are made of AlSi7 aluminium alloy (silumin) in a plaster mould. A new type of polymer waxes enriched with bentonite was used to obtain new composites, minimizing the defects caused by the casting production process. The castings were made in the centrifugal casting process. The prepared plaster moulds were removed from the furnace and poured with liquid aluminium alloy (AlSi7) at 750°C. The surface and fracture of the castings was analysed using an optical digital microscope type VHX-7000 manufactured by KEYENCE. It has been proven that the studied castings feature surface defects (raw surface defects) in the form of high roughness and the presence of bentonite inclusions classified as casting contamination. During the tests, shape defects related to mechanical damage were also.
Rocznik
Strony
113--117
Opis fizyczny
Bibliogr. 22 poz., il., tab., wykr.
Twórcy
  • Poznań University of Technology, Poland
  • Maritime University of Szczecin, Poland
  • Poznań University of Technology, Poland
Bibliografia
  • [1] Kozakowski, S. (2001). Study of castings. Warsaw: Biuro Gamma. (in Polish).
  • [2] Sozański, L. (2004). Visual examination of castings surface discontinuities according to European standards. Archives of Foundry. 4(11). 196-199. (in Polish).
  • [3] Sozański, L. (2006). Possibilities of assessment of surface discontinuities of castings. Archiwum Odlewnictwa. 6(2), 331-336. (in Polish).
  • [4] PN EN 1559-1 Founding – Technical delivery conditions – General provisions. (in Polish)
  • [5] PN EN 1371-2 Founding. Penetrant testing. Part 2: Castings made using the lost-wax method. (in Polish).
  • [6] PN EN 1370 Founding – Surface roughness testing using visual-tactile standards. (in Polish).
  • [7] Kuchariková, L., Tillová, E., Samardžiová, M. et al., (2019). Quality assessment of Al castings produced in sand molds using image and CT analyses. Journal of Materials Engineering and Performance. 28, 3966-3973. https://doi.org/10.1007/s11665-019-04040-z.
  • [8] Sika, R., Rogalewicz, M., Popielarski, P., Czarnecka-Komorowska, D., Przestacki, D., Gawdzińska, K. & Szymański, P. (2020). Decision support system in the field of defects assessment in the metal matrix composites castings. Materials. 13(16), 3552. https://doi.org/10.3390/ma13163552.
  • [9] Tupaj, M., Orłowicz, A.W., Mróz, M., Trytek,. A., & Markowska, O. (2016). The effect of cooling rate on properties of intermetallic phase in a complex Al-Si alloy. Archives of Foundry Engineering. 16(3), 125-128. DOI: 10.1515/afe-2016-0063.
  • [10] Gawdzińska, K., Chybowski, L., Bejger J.A. & Krile, S. (2016). Determination of technological parameters of saturated composites based on SiC by means of a model liquid. Metalurgija. 55(4) 659-662. https://hrcak.srce.hr/157391.
  • [11] Aziz, M.N., Munyensanga, P. & Widyanto, S.A. (2018). Application of lost wax casting for manufacturing of orthopedic screw: A review. Procedia CIRP. 78, 149-154.
  • [12] Zych, J., Kolczyk, J., & Snopkiewicz, T. (2012). Investigations of properties of wax mixtures used in the investment casting technology, New investigation methods. Archives of Foundry Engineering. 12(spec.1), 199-204. ISSN (1897-3310).
  • [13] Wen, J., Xie, Z., Cao, W. & Yang, X. (2016). Effects of different backbone binders on the characteristics of zirconia parts using wax-based binder system via ceramic injection molding. Journal of Advanced Ceramics. 5(4), 321-328. https://doi.org/10.1007/s40145-016-0205-1.
  • [14] Czarnecka-Komorowska, D., Grześkowiak, K., Popielarski, P., Barczewski, M., Gawdzińska, K. & Popławski, M. (2020). Polyethylene wax modified by organoclay bentonite used in the lost-wax casting process: processing−structure−property relationships. Materials. 13(2255), 1-22. https://doi.org/10.3390/ma13102255.
  • [15] Naplocha, K. & Granat, K. (2008). Dry sliding wear of Al/Saffil/C hybrid metal matrix composites. Wear. 265(11-12), 1734-1740. https://doi.org/10.1016/j.wear.2008.04.006.
  • [16] Olszówka-Myalska, A., Godzierz, M., Myalski, J. & Wrześniowski, P. (2019). Magnesium matrix composites with open-celled glassy carbon foam obtained using the infiltration method. Metals. 9(622), 1-14. DOI: 10.3390/met9060622.
  • [17] Grzeskowiak, K., Czarnecka-Komorowska, D., Sytek K. & Wojciechowski, M. (2015). Influence of waxes remelting used in investment casting on their thermal properties and linear shrinkage. Metalurgija. 54(2), 350-352. https://hrcak.srce.hr/128959.
  • [18] Trytek, A., Orłowicz, A.W., Tupaj, M., Mróz, M., Markowska, O., Bąk, G. & Abram, T. (2016). The effect of a thin459 wall casting mould cavity filling conditions on the casting surface quality. Archives of Foundry Engineering. 16(4), 222-226. DOI: 10.1515/afe-2016-0113.
  • [19] Dolata, A.J., Dyzia, M., Putyra, P. & Jaworska, L. (2016). Cast hybrid composites designated for air compressor 549 pistons. Archives of Metallurgy and Materials. 61(2), 705-708. DOI: 10.1515/amm-2016-0120.
  • [20] Staude, M. (2021). Porosity assessment of suspension and saturated composite castings with the use of microscopic examinations. Scientific Journals of the Maritime University of Szczecin. 67(139), 53-57.
  • [21] Skołek, E., Giętka, T., Świątnicki, W. & Myszka, D. (2017). The comparative study of the microstructure and phase composition of nanoausferritic ductile iron alloy using SEM, TEM, magnetometer, and X-ray diffraction methods. Acta Physica Polonica A. 5(131), 1319-1323, DOI: 10.12693/APhysPolA.131.1319.
  • [22] Polish Standard PN-85/H-83105. Castings. Division and terminology of defects. (in Polish).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5662fe70-184f-4c0b-a40c-f6c1b3a1fd2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.