PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research the Integration of Geodetic and Geotechnical Methods in Monitoring the Horizontal Displacement of Diaphragm Walls

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article investigates the integration of geodetic and geotechnical methods for monitoring the horizontal displacement of diaphragm walls. The results show that when the horizontal displacement is measured by the geotechnical method using an inclinometer sensor, the center point at the bottom of the guide pipe is usually chosen to be the origin to calculate displacements of the upper points. However, it is challenging to survey the bottom point for checking its stability directly. If this bottom point moves, the observation results will be incorrect. Thus, the guide pipe must be installed in the stable rock layer. But in the soft ground, this rock layer locates more deeply than the diaphragm walls, so the guide pipe cannot be laid out at the required location. Geodetic methods can directly observe the displacement of the center point on the top of the guide pipe with absolute displacement values at high accuracy. Because the displacements of observation points are determined at stable benchmarks, these values are considered the pipe's displacement. Thus, an integrated solution allows the center point on the top of the pipe to be the origin to calculate the displacements of different points located inside the diaphragm wall. Then, the calculated values are calibrated back to the inclinometer observed values to achieve highly reliable displacement, which reflects the moving of diaphragm walls. An experiment integrating the geodetic and geotechnical methods is conducted with an observation point at a depth of 20 meters at a construction site in Ho Chi Minh city. The deviations of the top point that are observed by the two methods are -4.37 millimeters and -3.69 millimeters on the X-axis and the Y-axis, respectively. The corrected observed results prove that the integrated solution has a good efficiency in monitoring the horizontal displacement of diaphragm walls. The bottom point observed by an inclinometer is unconfident enough to choose to be a reference point.
Rocznik
Tom
Strony
331--340
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr., zdj.
Twórcy
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Institute for Building Science and Technology (IBST), Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
Bibliografia
  • 1. Astm D6230–98. Standard Test Method for Monitoring Ground Movement Using Probe-Type Inclinometers, 2005.
  • 2. Nisha, J.J., Muttharam, M., 2017. Deep excavation supported by diaphragm wall: A case study, Indian Geotechnical Journal, 47(3): 373-383.
  • 3. Castelli, F., Lentini, V., 2016. Monitoring of full scale diaphragm wall for a deep excavation. Proceedings of 1st IMEKO TC-4 international workshop on metrology for geotechnics. Benevento, Italy, 103-108.
  • 4. Grodecki, M., Toś, C., Pomierny, M., 2018. Excavation supported by diaphragm walls–inclinometric monitoring and numerical simulations. Czasopismo Techniczne, 5: 129-140.
  • 5. Chen, S.L., Ho, C.T., Gui, M.W., 2014. Diaphragm wall displacement due to creep of soft clay. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 167(3): 297-310.
  • 6. Castelli, F., Lentini, V., 2019. Numerical Modelling and Experimental Monitoring of a Full-Scale Diaphragm Wall. International Journal of Civil Engineering, 17(6): 659-672.
  • 7. Liu, G.B., Jiang, R.J., Charles, W.N., Hong, Y., 2011. Deformation characteristics of a 38 m deep excavation in soft clay. Canadian Geotechnical Journal, 48(12): 1817-1828.
  • 8. Wu, S.H., Ching, J., Ou, C.Y., 2013. Predicting wall displacements for excavations with cross walls in soft clay. Journal of geotechnical and Geoenvironmental engineering, 139(6): 914-927.
  • 9. Chen, S.H., Ho, C.T., Gui, M.W., 2014. Diaphragm wall displacement due to creep of soft clay. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 167(3): 297-310.
  • 10. Teparaksa, W., Teparaksa, J., 2018. Displacement of Diaphragm Wall for Very Deep Basement Excavation in Soft Bangkok Clay. International Journal, 14(46): 57-62.
  • 11. Kalkan, Y., Baykal, O., Alkan, R.M., Yanalak, M., Erden, T., 2002. Deformation Monitoring with Geodetic and Geotechnical Methods: A case study in Ambarli Region. International Symposium on GIS, 1-12.
  • 12. Tran Khanh, Nguyen Quang Phuc. Structural deformation and displacement monitoring. Transportation Publisher, Hanoi, 2010.
  • 13. Diem Cong Huy, Ngo Van Hoi, Tran Ngoc Đong, Nguyen Anh Dung, Đinh Quoc Dan and the other people. Training curriculum on construction monitoring. Construction Publisher, Hanoi, 2016.
  • 14. Guide To Geotechnical Instrumentation. Durham Geo Slope Indicator, 2004.
  • 15. Pham, K.Quoc and Nguyen, T.Kim Thi 2021. Application of the method of robust estimation by posterior variance in detecting the raw error of geodetic control network (in Vietnamese). Journal of Mining and Earth Sciences. 62, 2 (Apr, 2021), 57-64. DOI:https://doi.org/10.46326/JMES.2021.62(2).06.
  • 16. Pham, K.Quoc 2021. Application of statistical test on determining the unstable points in the basic network of horizontal displacement monitoring (in Vietnamese). Journal of Mining and Earth Sciences. 62, 1 (Feb, 2021), 35-41. DOI:https://doi.org/10.46326/JMES.2021.62(1).05.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5662b22d-9ee5-4a82-835c-4b9d59046e29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.