Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of the Ti10V2Fe3Al alloy crack resistance assessment using the Rice’s J-integral technique as a function of morphology and volume fraction of α-phase precipitates. Titanium alloys characterized by the two-phase structure α + β are an interesting alternative to classic steels with high mechanical properties. Despite the high manufacturing costs and processing of titanium alloys, they are used in heavily loaded constructions in the aerospace industry due to its high strength to density ratio. The literature lacks detailed data on the influence of microstructure and, in particular, the morphology of α phase precipitates on fracture toughness in high strength titanium alloys. In the following work an attempt was made to determine the correlation between the microstructure and resistance to cracking in the Ti10V2Fe3Al alloy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
759--764
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab.
Twórcy
autor
- Cracow University of Technology, Department of Mechanical Engineering, Institute of Materials Science, 37 Jana Pawła II Av, 31-864 Kraków, Poland
autor
autor
- Cracow University of Technology, Department of Mechanical Engineering, Institute of Production Engineering, 37 Jana Pawła II Av, 31-864 Kraków, Poland
Bibliografia
- [1] T. W. Duerig, J. Albrecht, D. Richer, P. Fischer, Acta Metall. 30, 2161-2172 (1982)
- [2] J. Kawałko, M. Wroński, M. Bieda, K. Sztwiertnia, K. Wierzbanowski, D. Wojtas, M. Łagoda, P. Ostachowski, W. Pachla, M. Kulczyk, Materials Characterization 141, 19-31 (2018).
- [3] R. Dąbrowski, Arch. Metal. Mater. 56, 703-707 (2011)
- [4] G. LüterIng, J.C. Williams, Titanium, second ed., Springer, Berlin 2007.
- [5] R. Bogucki, K. Mosór, M. Nykiel, Arch. Metal. Mater. 59, 1269-1273 (2014).
- [6] C. Li, X. Wu, J.H. Chen, S. Vander Zwaag, Mater. Sci. Eng. A 528, 5854-5860 (2011).
- [7] G. T. Terlinde, T. W. Duerig, J. C. Williams, Metallurgical Transactions A, 14A, 2101-2115 (1983).
- [8] A. Bhattacharjee, S. Bhargava, V. K. Varma, S. V. Kamat, A. K. Gogia, Scripta Materialia 53, 195-200 (2005)
- [9] Wei Chen, Qiaoyan Sun, Lin Xiao, Jun Sun, Materials Science and Engineering A 527, 7225-7234 (2010).
- [10] Ying Wua, Jianrong Liua, Hao Wanga, Shaoxuan Guana, Rui Yanga, Hongfu Xiang, Journal of Materials Science & Technology 34, 1189-1195 (2018) .
- [11] O. Umezawa, K. Nagai, T. Yuri, T. Ogata, K. Ishikawa, Advances in Cryogenic Engineering Materials 38, 175-182 (1992)
- [12] S. Q. Zhang, S. J. Li, M. T. Jia, F. Prima, L. J. Chen, Y. L. Hao, R. Yang, Acta Materialia 59, 4690-4699(2011).
- [13] Y. Ono, T. Yuri, H. Sumiyoshi, S. Matsuoka, T. Ogata, Cryogenics 43, 483-489 (2003).
- [14] R. O. Ritchie, D. L. Davidson, B. L. Boyce, J. P. Campbell, O. Roder, Fatigue Fract. Eng. Mater. Struct. 22, 621-631 (1999).
- [15] R. Bogucki, Arch. Metal. Mater. 54, 1073-1082 (2009).
- [16] Xian-Kui Zhu, James A. Joyce, Engineering Fracture Mechanics 85, 1-46 (2012).
- [17] S. G. Ivanova, R. R. Biederman, R. D. Sisson Jr., Journal of Materials Engineering and Performance 11 (2), 226-231(2002).
- [18] Zhang Junhong, Yang Shuo, Lin Jiewei, Chinese Journal of Mechanical Engineering 28 (2), 409-415 (2015).
- [19] O. Quénard, O. Dorival, Ph. Guy, A. Votié, K. Brethome, Springer, published online: 03 April 2018.
- [20] T. W. Duerig, J. E. Allison, J. C. Williams, Metallurgical Transactions A 16A, 739-751(1985).
- [21] R. R. Boyer, G. W. Kuhlman, Metallurgical Transactions A 18A, 2095-2103 (1987).
- [22] S. K. Jha, K. S. Ravichandran, Metallurgical and Materials Transactions A 31A, 703-714 (2000).
- [23] J. Kobayashi, D Ina, A. Futamura, K. Sugimoto, ISIJ International 54, 4, 955-962 (2014).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5661ffcc-44f5-44a2-9959-9c3b7ff4bab0