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Abstract 

For the numerical handling of nucleation and extension of cracks within different materials, phase field modeling of 

fracture was shown to be a very beneficial technique in the past decade. Within numerous studies the framework was 

successfully applied even to complex crack problems. However, a phenomenon, which has not been much in the focus of 

research in terms of phase field modeling, is cyclic fatigue crack growth. Within technical developments this phenomenon 

is crucial as it has been found to be the source of several devastating accidents in the past. Within this work we introduce a 

phase field model capable of capturing fatigue crack growth under unidirectional as well as mixed mode loading. The 

driving force of the fatigue mechanism is controlled by cyclic damage evaluated from Miner's rule, a very famous and 

robust phenomenological law within fatigue simulations. Among the prediction of realistic crack growth curves, the accu-

racy of the model is verified by comparison with analytic results regarding the crack growth direction. 
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1. INTRODUCTION 

The motivation for research within the field of cy-

clic mechanical fatigue is basically a large number of 

failures of components in machines or structures, like 

airplanes, trains, bridges, turbines, pressure vessels 

and others, leading to catastrophic accidents. Fatigue 

can be defined as damage or failure of a material 

caused by cyclic loading where maximum load values 

for fatigue failure can be far below quasi static design 

limits. The reasons for this, as it is outlined in several 

textbooks like e.g. (Dowling, 2013; Schijve, 2009; 

Haibach, 2006), is cyclic slip occurring below global 

stress levels within grains of proper orientation with 

respect to the loading. The material becomes more 

and more disrupted as additional slip systems get in-

volved due to ongoing cycling until a micro crack is 

generated. Within fatigue lifetime estimation, it is dif-

ferentiated between the phase of crack nucleation and 

the phase of macro crack growth until the final over-

load fracture. The first phase is mainly described by 

so-called Wöhler curves, which are also called S-N 

curves. This law has an experimental basis and as-

signs a certain number of bearable load cycles to a 

certain load amplitude. The second phase of the fa-

tigue live i.e. the macro crack growth phase is de-

scribed by a power law for the crack growth rates de-

pending on the particular cyclic stress intensity factor 

range ΔK, namely Paris' law (Paris & Erdogan, 1963). 

This law is incorporated within the probably most fa-

mous conventional numerical fatigue crack tool 

NASGRO (Forman et al., 2005).   

Compared to conventional crack simulation ap-

proaches, within phase field fracture models it is un-

necessary to delete or disconnect elements and also 

no remeshing is required since one discretization is 

sufficient to deal with cracks simply via an additional 
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degree of freedom indicating which phase (intact ma-

terial or crack) is present at a certain location. This 

framework was so far applied to quasi static brittle 

fracture (Kuhn & Müller, 2010; Borden et al., 2014; 

Miehe et al., 2010), anisotropic fracture (Teichtmeis-

ter et al., 2017; Schreiber et al., 2017; Hakim & 

Karma, 2009), ductile fracture (Kuhn et al., 2016;  

Borden et al., 2016) as well as to dynamic fracture 

(Schlüter et al., 2014). Phase field modeling of fatigue 

fracture was so far handled by Alessi et al., (2017) 

and by Seiler et al., (2018). Within the models from 

these studies the fracture toughness of the material is 

decreased once an accumulated strain measure in-

creases. In contrast, we incorporate the fatigue mech-

anism occurring in a material by means of an addi-

tional driving force contribution caused by cyclically 

accumulated deformation work. The model is an en-

hancement of the model for brittle fracture (Kuhn & 

Müller, 2010). The enhancement accounts for fatigue 

damage accumulation as consequence of a permanent 

sequence of loading and unloading.  

2. MODEL DESCRIPTION 

2.1. Regularized phase field model for brittle 

fracture 

The basic characteristic of a phase field fracture 

model is the introduction of an additional degree of 

freedom in order to represent cracks. This additional 

field parameter retains 1 as long as the material can 

be refereed as intact. Once a crack nucleates or ex-

tends, the field parameter will decrease to 0, where 

the transition from 1 to 0 is continuous in space and 

time. Within the presented model the field parameter 

is designated as s(x,t) and as indicated above its value 

is limited to [0,1]. The basic model for our investiga-

tion follows Kuhn and Müller (2010), which makes 

use of a regularized formulation of the variational 

model for brittle fracture presented by Bourdin et al. 

(2000). Therefore, the total energy within a loaded 

sample: 
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has to be minimized. In equation (1), W is the elastic 

strain energy density, the function g is a degradation 

function accounting for stiffness decrease in case of 

cracking and the parameter η must be chosen such 

that 0< η ≪1, so a residual stiffness η  is ensured for 

areas with s = 0. This is important to enable a stable 

solution procedure. The crack energy density Γ is de-

fined as: 
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where the parameter Gc is the critical energy release 

rate and ϵ is the length scale, which controls the width 

of the transition zone between undamaged and frac-

tured material. Equation (2) is a regularization of 

Griffith's surface energy and accordingly the minimi-

zation of equation (1) is also in the sense of Griffith's 

theory, which states that a crack propagates once the 

release of strain energy is balanced by the amount of 

required surface energy.  In case of a hyper elastic 

material the stresses can be derived by: 
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where  ε  is the linearized strain tensor and  is the 

material tensor. The degradation function has to fulfil 

g(0) = 0, g(1) = 1 and also g’(0) = 0. These restrictions 

are fulfilled by g(s) = s2 (see e.g. Kuhn et al. 2015), 

which will be set as degradation function within this 

work. A generalized Ginzburg-Landau equation 

(Gurtin, 1996) is applied to find the time evolution of 

the phase field s by: 
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In equation (4) the Voigt notation for symmetric ten-

sors is applied to the stiffness tensor  and to the lin-

earized strain tensor ε. The mobility parameter M can 

be considered as viscous regularization value to ap-

proach quasi static conditions by the limit M → ∞. 

2.2. Phase filed model for cyclic fatigue 

Suppose the phase field model for quasi static 

fracture (Kuhn & Müller, 2010) is used within a sim-

ulation where a monotonous increasing load is ap-

plied to a sample. In this case, cracks will definitely 

be included in the solution, as at a certain point it will 

be energetically more favorable to decrease s than to 

allow for more strain energy. However, the problem 

for an application for cyclic loading is, that the load 

amplitudes within the range where the fatigue phe-

nomenon occurs are small to very small. Without a 
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modification, a crack will never occur in the solution, 

as this would simply be too costly from an energetic 

viewpoint, even if an infinite number of load cycles 

is simulated. Therefore, an enhanced version of the 

regularized formulation of the total energy was intro-

duced in (Schreiber et al. 2019) as: 

 
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with the additional energy density contribution P, 

which is intended to account for additional driving 

forces caused by the phenomenon of cyclic fatigue. 

The function h(s) is another degradation function to 

reduce the energy from P once a crack evolves. The 

energy Eac has to increase rapidly once a critical value 

of fatigue damage is reached at a certain location as 

otherwise the cracks would extend lateral instead of 

growing as a line. This is ensured by the function: 

 
b

f f fcP D q D D   (6) 

where Df  is the local fatigue damage, Dfc is a critical 

threshold value. The ⟨⋅⟩n are Macauley brackets with 

the definition: ⟨⋅⟩n = 0 for (⋅) ⩽0 and ⟨⋅⟩n = (⋅)n for (⋅) 
> 0. The parameters q and b must be chosen in order 

to ensure a rapid decrease once Df  exceeds Dfc. The 

crucial task is now to define a proper estimate for Df 

or the increment dDf   respectively. In the literature 

one can find different approaches, e.g. those pre-

sented from Miner (1945) or Chaboche and Lesne 

(1988). Generally, every approach could be incorpo-

rated in the model presented here. However, the chal-

lenge is of course to obtain the best trade of between 

complexity, costs and quality of the prediction. 

Therefore, within this work the law from Miner 

(1949) will be used due to its simplicity and robust-

ness. According to this law the damage increment can 

be evaluated with the linear relation: 

1
f
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where NFi is the number of bearable load cycles to 

failure for a certain load amplitude. This number can 

be obtained by S-N curves, which are empirical laws 

obtained from cyclic tensile test relating stress ampli-

tude to NFi. Using these equations, the total internal 

energy of a sample subjected to cyclic loading, which 

may also contain fatigue cracks is found by: 
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The incorporated equations represent materials, 

which reveal a liner relation between load amplitude 

and cycles to failure using logarithmic scales, and ac-

cordingly in the first place the presented model ad-

dresses isotropic metallic materials. However, gener-

ally other relations for the fatigue damage evolution 

may be incorporated to handle a larger variety of ma-

terials. The significant driving force in equation (8) is 

σA, which is an amplitude value of the applied load 

cycles. In (Schreiber et al. 2019) simply the normal 

stress perpendicular to the tensile load was used for 

this value. This is sufficient for straight cracks occur-

ring under unidirectional loading, but for mixed mode 

loading normal stress is not appropriate as it will not 

predict the correct crack path. Erdogan and Sih (1963) 

proposed the Maximum Tangential Stress (MTS) cri-

terion for mixed mode loading, which basically states 

that a crack will extend perpendicular to the direction 

of the greatest tension around the crack tip. It can be 

shown (see e.g. Kuna (2008)) that this MTS is a prin-

cipal stress. Accordingly, to enable the phase field 

model to handle mixed mode loading the first princi-

pal stress has to be incorporated as the amplitude 

value σA and in a two dimensional setting: 
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Applying these modifications, the stresses be-

come: 
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with the derivative: 
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In equation (11) the Voigt notation for symmetric 

tensors is applied to  and ε. Further, the operators 

1+=[1⁄2, 1⁄2, 0]T, 1− = [1⁄2 -1⁄2, 0]T and 1τ = [0,0,1]T are 

introduced. According to this, the stresses introduced 

in equation (10) consist of two contributions. The first 

term accounts for static stresses and the second term 
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considers a contribution coming from accumulated 

micro stresses caused by the fatigue mechanism.  

2.3. Simulation scheme 

Within fatigue tests a very high number of load 

cycles generally has to be applied before crack nucle-

ation and growth can be observed. To explicitly sim-

ulate every cycle would cause enormously high com-

putational effort. Therefore, load cycles must be col-

lected in blocks and the effect in terms of damage may 

then be integrated within the simulation scheme. A 

procedure called cycle jump was presented by Fish 

and Yu (2002).  According to this scheme basically 

the damage caused by a certain number of load cycles 

is approximated and applied within one simulation 

step. This scheme is used within this work and ac-

cordingly the damage of the current simulation step 

Di is: 

 1i i f iD D dD N    (12) 

where Di-1 is the stored damage from the previous 

step. The block size of ΔNi is chosen adaptively to 

ensure a reliable convergence behaviour. 

Using chain rule differentiation, the phase field 

evolution equation (4) can be transferred to the cycle 

domain and is then reformulated in terms of cycles as:  
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with m now denoted as the mobility in the cycle do-

main. 

Cyclic loads are often applied under high frequen-

cies and energy dissipation may therefore not be ne-

glected within a model considered as generally valid. 

As within this work, basic features of the enhanced 

model are investigated a constant value for this ki-

netic coefficient of m = 1

C

L

G T

 with length parameter 

L time scale T and critical energy release rate, was 

chosen to ensure equal conditions throughout all per-

formed simulations. However, to develop an even 

more general model the frequency effects must be 

considered within further studies. 

3. NUMERICAL  EXAMPLES 

In this section the performed simulations will be 

explained in detail and results are discussed. The 

model was discretized and the nonlinear system of 

equations was solved within an implicit finite element 

scheme, where a user element routine of a 4-node 

quadrilateral element was implemented in FEAP 8.4. 

The finite element meshes were refined at areas ex-

pected for cracking to an edge length of approxi-

mately 0.3 mm to ensure a proper ratio of the element 

size and the length scale ϵ. A to large length scale 

would lead to an overestimation of the crack energy, 

which may affect the result in terms of crack exten-

sion direction. The material properties used for the 

simulations are shown in table 1. 

Table 1. Material parameters used for phase field simulations. 

Young’s modulus E 210 GPa 

Poisson’s ratio  0.3 

Critical energy release rate GC 2.3103 J/m 

Fatigue limit AD 195 MPa 

Fatigue life exponent  k 5 

Critical cycle number nD 0.9106 

Length scale ϵ 1.610-4 m 

Residual stiffness parameter  10-5 

3.1. Mode-I loading of CT-specimens 

To investigate the general behavior of the derived 

phase field model, simulations were performed using 

the geometry of so-called compact tension (CT)-

specimens (see figure 1a), as these are also considered 

within experimental test set-ups for material charac-

terization. This specimen was discretized with 3650 

nodes and 2984 elements. All performed simulations 

within this subsection were force controlled. In order 

to approximate the cyclic loading with constant am-

plitudes in the phase field simulations a ramp function 

was used (see figure 1b). 

As explained above, each simulation step repre-

sents a certain number of load cycles (cycle jump). 

The results of this simulation are shown by means of 

contour plots of the phase field variable s. These plots 

of the sections from the CT-specimen are illustrated 

in figure 2. After a certain number of simulated load 

cycles a crack nucleates at the notch root of the spec-

imen, which can be observed by a drop of the phase 

field to zero . Furthermore, the crack grows in hori-

zontal direction as consequence of ongoing cycling. 

Figure 3 shows results from three simulations in 

which different load sequences were applied. Within 

one sequence the high load cycles are applied first and 

those with lower amplitudes at last. For another se-

quence, the load sequence is inverted, such that at first 

the lower load cycles are applied. 
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a)  

b)  

Fig. 1. Set-up for simulations of mode-I test with CT-specimen: 
a) geometry, b) illustration of load sequences. 

Generally, a very interesting observation is that 

the course of crack length versus the number of cycles 

is obviously non-linear. Therefore, the simulations 

are generally in line with fatigue experiments (see e.g. 

Dowling (2013)). In the previous section is was out-

lined that the Miner law which is utilized within the 

presented model for accumulation of damage is a lin-

ear law and it can therefore not account for sequence 

effects. However, comparing the crack growth curves 

for the different load sequences, one can observe that 

for the overall fatigue crack problem the sequence 

plays a roll and these effects on the crack propagation 

are covered in the simulations. 

3.2. Mode-II loading 

To verify the capability of the presented phase 

field model regarding the prediction of fatigue crack 

growth under mixed mode loading, the load case de-

picted in figure 4a was set up. A displacement load in 

horizontal direction was applied on the upper part of 

the pre-cracked specimen (discretized by approxi-

mately 10,000 elements), while the lower part was re-

strained. Accordingly, a plane shear loading was ap-

proximated at the crack tip. Applying polar coordi-

nates, the analytic solution of the normal stress σφ and 

the shear stress σrφ is shown in e.g. Kuna (2008). This 

solution is illustrated in figure 4b. Considering this 

diagram one can see, that the maximum of the tangen-

tial stress σφ occurs at about -70.5°. 

a)  

b)  

c)  

 

Fig. 2. Contour plots of CT-specimens after 0 cycles (a), 41000 
cycles (b) and 90000 cycles (c). 
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Fig. 3. Crack length with respect to number of applied load cycles 
for simuluatons with different load sequences. 

a)  

b)  

Fig. 4. a) Test set-up for simulation of mode-II load case, b) 

illustration of stress componets near the crack tip for a plane 
shear loading. 

The results of the described mode-II simulation 

are shown in figure 5. The three contour plots of the 

phase field variable s clearly indicate that the crack 

grows in the direction predicted by the analytic refer-

ence solution. In case of a quasi static simulation a 

second crack would evolve towards the +70.5° direc-

tion, since the basic phase field model for brittle frac-

ture does not differentiate between tension or pres-

sure. In the enhanced model for fatigue crack growth 

the tension compression differentiation is implicitly 

given by the incorporation of the S-N line as this does 

not take load cycles into account, which are below a 

certain threshold (fatigue limit). 

a)  

b)  

c)  

 

Fig. 5. Contour plots of the phase field variable s for 195,900 

load cycles (a), 591,670 load cycles (b) and 881,400 load cycles 
(c). 

4. CONCLUSIONS 

In this work a phase field model for brittle frac-

ture was enhanced, such that crack nucleation and ex-

tension due to cyclic mechanical fatigue is also in-

cluded in the formulation. By means of different finite 

element simulations we showed that the presented 

model is able to adequately simulate mixed mode 
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loading for fatigue crack growth estimations. Never-

theless, there is potential for further improvements 

and extensions of the model. For instance, important 

effects like strain rate, temperature, load ratio and 

mean stress must be included in the framework to de-

liver a more general tool.  

ACKNOWLEDGMENTS 

This research was funded by the Deutsche For-

schungsgemeinschaft (DFG, German Research Foun-

dation) – 252408385 – IRTG 2057.  

REFERENCES 

Alessi, R., Vidoli, S., DeLorenzis, L., 2017, A phenomenological 

approach to fatigue with a variational phase field model: 

The one-dimensional case, Engineering Fracture Mechan-

ics, 190, 53-73. 

Borden, M.J., Hughes, T.J.R., Landis, C.M., Verhoosel, C.V., 

2014, A higher-order phase-field  model for brittle fracture: 

Formulation and analysis within the isogeometric analysis 

 framework, Computer Methods in Applied Mechanics 

and Engineering, 273, 100-118. 

Borden, M.J., Hughes, T.J.R., Landis, C.M., Anvari, A., 2016, A 

phase-field formulation for fracture in ductile materials: Fi-

nite deformation balance law derivation, plastic degrada-

tion, and stress triaxiality effects, Computational Methods 

in Applied Mechanics and Engineering, 312, 130-166. 

Bourdin, B., Francfort, G.A., Marigio, J.J., 2000, Numerical ex-

periments in revisited brittle fracture, Journal of the Me-

chanics and Physics of Solids, 48, 797-826. 

Chaboche, J.L., Lesne, P.M., 1988, A non-linear continuous fa-

tigue damage model, Fatigue Fracture of Engineering Ma-

terials and Structures, 11, 1-17. 

Dowling, N.E., 2013, Mechanical Behavior of Materials: Engi-

neering Methods for Deformation, Fracture, and Fatigue, 

4th edn, Person. 

Erdogan, F., Sih, G.C., 1963, On the crack extension in plates un-

der plane loading and transverse shear, J. Basic Eng., 85(4), 

519-525. 

Fish, J., Yu, Q., 2002, Computational mechanics of fatigue and 

life prediction composite materials and structures, Com-

puter Methods in Applied Mechanics and Engineering, 191, 

4827-4849.  

Forman, R.G., Shivakumar, V., Cardinal, J.W., Williams, L.C., 

McKeighan, P.C., 2005, Fatigue crack growth database for 

damage tolerance analysis, National Technical Information 

Service, 126. 

Gurtin, M.E., 1996, Generalized ginzburg-landau and cahn-hilli-

ard equations based on a microforce balance, Physica D., 

92, 178-192.  

Haibach, E., 2006, Betriebsfestigkeit–Verfahren und Daten zur 

Bauteilberechnung, 3rd edn., Springer, Heidelberg, 

Hakim, V., Karma, A., 2009, Laws of crack motion and phase-

field models of fracture, Journal of the Mechanics and 

Physics of Solids, 57 (2), 342-368. 

Kuhn, C., Müller, R., 2010, A continuum phase field model for 

fracture, Engineering Fracture Mechanics, 77, 3625-3634. 

Kuhn, C., Noll, T., Müller, R., 2016, On phase field modeling of 

ductile fracture, GAMM Mitteilungen, 39, 35-54.  

Kuhn, C., Schlüter, A., Müller, R., 2015, On degradation func-

tions in phase field fracture models, Computational Materi-

als Science, 108, 374-384. 

Kuna, M. 2008, Numerische Beanspruchungsanalyse von Rissen, 

1st ed., Vieweg Teubner, Wiesbaden. 

Miehe, C., Welschinger, F., Hofacker, M., 2010, Thermodynam-

ically consistent phase-field models of fracture: Variational 

principles and multi-field fe implementations, International 

Journal for Numerical Methods in Engineering, 83 (10), 

1273-1311. 

Miner, M.A., 1945, Cumulative damage in fatigue, Journal of Ap-

plied Mechanics, 12, A159-A164.  

Paris, P., Erdogan, F., 1963, A critical analysis of crack propaga-

tion laws, Journal of Basic Engineering, 85, 528-539. 

Schijve, J., 2009, Fatigue of Structures and Materials, 2nd edn., 

Springer.  

Schlüter, A., Willenbücher, A., Kuhn, C., Müller, R., 2014, Phase 

field approximation of  dynamic brittle fracture, Computa-

tional Mechanics, 54, 1141-1161. 

Schreiber, C., Kuhn, C., Müller, R., 2019, On phase field model-

ing in the context of cyclic mechanical fatigue, Proc. Appl. 

Math. Mech., 19 (1), doi: org/10.1002/pamm.201900104. 

Schreiber, C., Kuhn, C., Müller, R., 2017, A phase field model 

for materials with anisotropic fracture resistance, Proceed-

ings of the 7th GACM Colloquium, Stuttgart, 330-334. 

Seiler, M., Hantschke, P., Brosius, A., Kästner, M., 2018, A nu-

merically efficient phase-field model for fatigue fracture – 

1d analysis, Proc. Appl. Math. Mech., 18 (1), doi: 

10.1002/pamm.201800207. 

Teichtmeister, S., Kienle, D., Aldakheel, F., Keip, M. 2017, Phase 

field modeling of fracture in anisotropic brittle solids, Inter-

national Journal of Non-Linear Mechanics, 97, 1-21. 

MODEL POLA FAZ DLA WZROSTU PĘKNIĘCIA 

W CYKLICZNYM TEŚCIE ZMĘCZENIOWYM W 

WARUNKACH ZŁOŻONYCH OBCIĄŻEŃ 

Streszczenie 

W pracy wykazano, że w ostatnim dziesięcioleciu model pola faz 

okazał się efektywnym narzędziem do opisu zarodkowania i 

wzrostu pęknięć w różnych materiałach. Wielu badaczy skutecz-

nie zastosowało ten model nawet do złożonych warunków obcią-

żenia. Z drugiej strony problem wzrostu pęknięć w warunkach 

cyklicznych obciążeń zmęczeniowych nie był dotąd dogłębnie 

analizowany. To zjawisko było przyczyną wielu katastrof w prze-

szłości i stąd zasługuje na szczególną uwagę. W niniejszej pracy 

przedstawiono model pola faz pozwalający na opis wzrostu pęk-

nięcia zarówno przy jednoosiowym jak i złożonym charakterze 

obciążeń. Siła pędna mechanizmu pękania jest kontrolowana 

przez cykliczne zniszczenie wyznaczane z reguły Minera, która 

jest znanym i skutecznym prawem stosowanych w modelowaniu 

pękania. Poza przewidywaniem realiztycznych krzywych pęka-

nia, przeprowadzono weryfikację modelu poprzez porównanie z 

wynikami analitycznymi dla przewidywania kierunku wzrostu 

pęknięcia. 
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