Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This work describes the suitability of a nano-dimension slot with low index material in the core region to achieve a highly nonlinear, polarization maintaining and dispersion compensating photonic crystal fiber. Our design is composed of a spiral shaped photonic crystal fiber with an elliptical slot made of silicon nanocrystals in the core region. The simulated results show that high nonlinear coefficients at the 1.55 μm wavelength for quasi-TE mode and quasi-TM mode are found to be equal to 1348 and 638 W–1m–1, respectively. The proposed design offers high birefringence up to 0.2503 and large negative dispersion value –1228 ps/nm/km. The proposed fiber has immense potential for realization of all-optical signal processing devices/networks and sensing applications while maintaining its polarization.
Czasopismo
Rocznik
Tom
Strony
51--63
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
- Department of ECE, Malaviya National Institute of Technology, Jaipur, India
autor
- Engineering School of Communication of Tunis, University of Carthage, Tunisia
autor
- Department of ECE, Malaviya National Institute of Technology, Jaipur, India
Bibliografia
- [1] RUSSELL P., Photonic Crystal Fibers, Science 299(5605), 2003, pp. 358–362, DOI: 10.1126/science.1079280.
- [2] GHUNAWAT A.K., JAIN A., NIKITA K., TIWARI M., SINGH G., Optical Properties of Photonic Crystal Fibers, [In] Optical and Wireless Technologies, [Eds.] Janyani V., Tiwari M., Singh G., Minzioni P., Lecture Notes in Electrical Engineering, Vol. 472, Springer, Singapore, 2018, pp. 265–275, DOI: 10.1007/978-981-10-7395-3_30.
- [3] BIRKS T.A., KNIGHT J.C., RUSSELL P.St.J., Endlessly single-mode photonic crystal fiber, Optics Letters 22(13), 1997, pp. 961–963, DOI: 10.1364/OL.22.000961.
- [4] LEE J.H., TEH P.C., YUSOFF Z., IBSEN M., BELARDI W., MONRO T.M., RICHARDSON D.J., A holey fiber based nonlinear thresholding device for optical CDMA receiver performance enhancement, IEEE Photonics Technology Letters 14(6), 2002, pp. 876–878, DOI: 10.1109/LPT.2002.1003123.
- [5] GHUNAWAT A.K., CHANDRA R., SINGH G., Design of an ultra-flattened negative dispersion elliptical spiral photonic crystal fiber with high nonlinearity and high birefringence, 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, 2017, pp. 623–627, DOI: 10.1109/COMPTELIX.2017.8004044.
- [6] SURYAVANSHI R.C., GHUNAWAT A.K., JAIN S., SINGH G., Optimization of highly nonlinear soft glass photonic crystal fiber with high birefringence, 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, 2017, pp. 618–622, DOI: 10.1109/COMPTELIX.2017.8004043.
- [7] LU S., LI W., GUO H., LU M., Analysis of birefringent and dispersive properties of photonic crystal fibers, Applied Optics 50(30), 2011, pp. 5798–5802, DOI: 10.1364/AO.50.005798.
- [8] CHENGCHENG GUI, JIAN WANG, Elliptical–spiral photonic crystal fibers with wideband high birefringence, large nonlinearity, and low dispersion, IEEE Photonics Journal 4(6), 2012, pp. 2152–2158, DOI: 10.1109/JPHOT.2012.2226149.
- [9] EUSER T., SCHMIDT M., JOLY N., GABRIEL C., MARQUARDT C., ZANG L.Y., FÖRTSCH M., BANZER P., BRENN A., ELSER D., SCHARRER M., LEUCHS G., RUSSELL P.ST.J., Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber, Journal of the Optical Society of America B 28(1), 2011, pp. 193–198, DOI: 10.1364/JOSAB.28.000193.
- [10] JIANFEI LIAO, JUNQIANG SUN, High birefringent rectangular-lattice photonic crystal fibers with low confinement loss employing different sizes of elliptical air holes in the cladding and the core, Optical Fiber Technology 18(6), 2012, pp. 457–461, DOI: 10.1016/j.yofte.2012.07.006.
- [11] ALMEIDA V.R., QIANFAN XU, BARRIOS C.A., LIPSON M., Guiding and confining light in void nanostructure, Optics Letters 29(11), 2004, pp. 1209–1211, DOI: 10.1364/OL.29.001209.
- [12] QIANFAN XU, ALMEIDA V.R., PANEPUCCI R.R., LIPSON M., Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Optics Letters 29(14), 2004, pp. 1626 –1628, DOI: 10.1364/OL.29.001626.
- [13] BARRIOS C.A., SÁNCHEZ B., GYLFASON K.B., GRIOL A., SOHLSTRÖM H., HOLGADO M., CASQUEL R., Demonstration of slot-waveguide structures on silicon nitride/silicon oxide platform, Optics Express 15(11), 2007, pp. 6846–6856, DOI: 10.1364/OE.15.006846.
- [14] SPANO R., GALAN J.V., SANCHIS P., MARTINEZ A., MARTÍ J., PAVESI L., Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals, 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 314–316, DOI: 10.1109/GROUP4.2008.4638184.
- [15] JIANFEI LIAO, JUNQIANG SUN, MINGDI DU, YI QIN, Highly nonlinear dispersion-flattened slotted spiral photonic crystal fibers, IEEE Photonics Technology Letters 26(4), 2014, pp. 380–383, DOI: 10.1109/ LPT.2013.2293661.
- [16] JIANFEI LIAO, FAN YANG, YINGMAO XIE, XINGHUA WANG, TIANYE HUANG, ZUZHOU XIONG, FANGGUANG KUANG, Ultrahigh birefringent nonlinear slot silicon microfiber with low dispersion, IEEE Photonics Technology Letters 27(17), 2015, pp. 1868–1871, DOI: 10.1109/LPT.2015.2443986.
- [17] TIANYE HUANG, JIANFEI LIAO, SONGNIAN FU, TANG M., SHUM P., DEMING LIU, Slot spiral silicon photonic crystal fiber with property of both high birefringence and high nonlinearity, IEEE Photonics Journal 6(3), 2014, article ID 2200807, DOI: 10.1109/JPHOT.2014.2323312.
- [18] BAILI A., CHERIF R., HEIDT A., ZGHAL M., Maximizing the bandwidth of coherent, mid-IR supercontinuum using highly nonlinear aperiodic nanofibers, Journal of Modern Optics 61(8), 2014, pp. 650 –661, DOI: 10.1080/09500340.2014.905646.
- [19] VYAS S., TANABE T., TIWARI M., SINGH G., Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation, Chinese Optics Letters 14(12), 2016, p. 123201.
- [20] RIM CHERIF, AMINE BEN SALEM, MOURAD ZGHAL, BESNARD P., CHARTIER T., BRILLAND L., TROLES J., Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation, Optical Engineering 49(9), 2010, article ID 095002, DOI: 10.1117/1.3488042.
- [21] YATSENKO YU.P., PRYAMIKOV A.D., Parametric frequency conversion in photonic crystal fibers with germanosilicate core, Journal of Optics A: Pure and Applied Optics 9(7), 2007, pp. 716–722, DOI: 10.1088/1464-4258/9/7/025.
- [22] TOULOUSE J., Optical nonlinearities in fibers: review, recent examples, and systems applications, Journal of Lightwave Technology 23(11), 2005, pp. 3625–3641, DOI: 10.1109/JLT.2005.855877.
- [23] WILLNER A.E., YILMAZ O.F., JIAN WANG, XIAOXIA WU, BOGONI A., LIN ZHANG, NUCCIO S.R., Optically efficient nonlinear signal processing, IEEE Journal of Selected Topics in Quantum Electronics 17(2), 2011, pp. 320–332, DOI: 10.1109/JSTQE.2010.2055551.
- [24] TIANYU YANG, ERLEI WANG, HAIMING JIANG, ZHIJIA HU, KANG XIE, High birefringence photonic crystal fiber with high nonlinearity and low confinement loss, Optics Express 23(7), 2015, pp. 8329–8337, DOI: 10.1364/OE.23.008329.
- [25] HAMEED M.F.O., OBAYYA S.S.A., EL-MIKATI H.A., Highly nonlinear birefringent soft glass photonic crystal fiber with liquid crystal core, IEEE Photonics Technology Letters 23(20), 2011, pp. 1478–1480, DOI: 10.1109/LPT.2011.2163499.
- [26] SAINI T.S., BAILI A., KUMAR A., CHERIF R., ZGHAL M., SINHA R.K., Design and analysis of equiangular spiral photonic crystal fiber for mid-infrared supercontinuum generation, Journal of Modern Optics 62(19), 2015, pp. 1570–1576, DOI: 10.1080/09500340.2015.1051600.
- [27] REVATHI S., INABATHINI S., SANDEEP R., Soft glass spiral photonic crystal fiber for large nonlinearity and high birefringence, Optica Applicata 45(1), 2015, pp. 15–24, DOI: 10.5277/oa150102.
- [28] SAITOH K., KOSHIBA M., Single-polarization single-mode photonic crystal fibers, IEEE Photonics Technology Letters 15(10), 2003, pp. 1384–1386, DOI: 10.1109/LPT.2003.818215.
- [29] JIAO S.L., TODOROVIĆ M., STOICA G., WANG L.V., Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation, Applied Optics 44(26), 2005, pp. 5463–5467, DOI: 10.1364/AO.44.005463.
- [30] HAO RUI, Highly birefringent photonic crystal fiber with a squeezed core and small modal area, Optik 127(13), 2016, pp. 5245–5248, DOI: 10.1016/j.ijleo.2016.03.045.
- [31] VAN THOURHOUT D., VAN CAMPENHOUT J., ROJO-ROMEO P., REGRENY P., SEASSAL C., BINETTI P., LEIJTENS X.J.M., NOTZEL R., SMIT M.K., DI CIOCCIO L., LAGAHE C., FEDELI J.-M., BAETS R., A photonic interconnect layer on CMOS, 33rd European Conference and Exhibition of Optical Communication, 2007, Berlin, Germany, pp. 1–2, DOI: 10.1049/ic:2007022.
- [32] TSYBESKOV L., LOCKWOOD D.J., ICHIKAWA M., Silicon photonics: CMOS going optical, Proceedings of the IEEE 97(7), 2009, pp. 1161–1165.
- [33] SAHU S., ALI J., SINGH G., Optimization of a dual-slot waveguide for a refractive index biosensor, Optica Applicata 48(1), 2018, pp. 161–167, DOI: 10.5277/oa180115.
- [34] BENTON C.J., Solitons and nonlinear optics in silicon-on-insulator photonic wires, Ph.D. Dissertation, Department of Physics, University of Bath, Bath, U.K., 2009.
- [35] ADEMGIL H., HAXHA S., Bending insensitive large mode area photonic crystal fiber, Optik 122(21), 2011, pp. 1950–1956, DOI: 10.1016/j.ijleo.2010.09.048.
- [36] VUKOVIC N., HEALY N., PEACOCK A.C., Guiding properties of large mode area silicon microstructured fibers: a route to effective single mode operation, Journal of the Optical Society of America B 28(6), 2011, pp. 1529–1533, DOI: 10.1364/JOSAB.28.001529.
- [37] FATIH YAMAN, HYUNGSEOK PANG, XIAOBO XIE, PATRICK LIKAMWA, GUIFANG LI, Silicon photonic crystal fiber, [In] Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD), Optical Society of America, 2009, paper CTuDD7, DOI: 10.1364/CLEO.2009.CTuDD7.
- [38] BELARDI W., BOUWMANS G., PROVINO L., DOUAY M., Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area, IEEE Journal of Quantum Electronics 41(12), 2005, pp. 1558–1564, DOI: 10.1109/JQE.2005.858793.
- [39] SONGBAE MOON, AOXIANG LIN, BOK HYEON KIM, WATEKAR P.R., WON-TAEK HAN, Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles, Journal of Non-Crystalline Solids 354(2–9), 2008, pp. 602–606, DOI: 10.1016/j.jnoncrysol.2007.07.088.
- [40] PEACOCK A.C., SPARKS J.R., HEALY N., Semiconductor optical fibers: progress and opportunities, Laser and Photonics Reviews 8(1), 2014, pp. 53–72, DOI: 10.1002/lpor.201300016.
- [41] ZHENG ZHENG, MUDDASSIR IQBAL, JIANSHENG LIU, Dispersion characteristics of SOI-based slot optical waveguides, Optics Communications 281(20), 2008, pp. 5151–5155, DOI: 10.1016/j.optcom.2008.07.003.
- [42] AGRAWAL G.P., Nonlinear Fiber Optics, Academic Press, New York, 1995.
- [43] KAI JIANG, SONGNIAN FU, SHUM P., CHINLON LIN, A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes, IEEE Photonics Technology Letters 22(11), 2010, pp. 754–756, DOI: 10.1109/LPT.2010.2045647.
- [44] SPANO R., DALDOSSO N., CAZZANELLI M., FERRAIOLI L., TARTARA L., YU J., DEGIORGIO V., JORDANA E., FEDELI J.M., PAVESI L., Bound electronic and free carrier nonlinearities in silicon nanocrystals at 1550 nm, Optics Express 17(5), 2009, pp. 3941–3950, DOI: 10.1364/OE.17.003941.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-564a4620-0f54-43f8-8020-5b08718a66bf